R VId SI	
	Workers Compensation Catastrophes
	Maria Paul

Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

CONFIDENTIAL

Presentation Outline

Sources of Risk

ant Solutions. Inc

- Workers Comp Exposure Modeling
- Overview of Terrorism and Earthquake Model Methodology

World Trade Center disaster

- At the time, biggest insured loss to that date resulted from an "unknown" peril
- Estimated loss to workers compensation ~ \$2.0 Billion
- There are a number of other events that could generate higher losses depending on a number of factors including event magnitude, time of day, and location

ant Solutions

Event	Description	Casualties
	Earthquake events	
Loma Prieta	Oct. 17, 1989; 5PM; Ms 7.1	65 deaths; 3,800 injuries
Northridge	Jan. 17, 1994; 4:31AM; M _w 6.7	60 deaths; 12,000 injuries
Kobe, Japan	Jan. 17, 1995; 6AM; JMA 7.2, M _w 6.8	5,500 deaths; 42,000 injuries
Athens, Greece	Sep. 7, 1999; 3PM; M _w 5.9	140 deaths; 2,000 injuries
Chi-Chi, Taiwan	Sep. 21, 1999; 2AM; M _w 7.6	2,400 deaths; 11,000 injuries
Izmit, Turkey	Aug. 17, 1999; 3AM; M _w 7.4, M _s 7.8	17,400 deaths; 43,900 injured
Sichuan, China	May 12, 2008; 2:28PM; M _w 7.9, M _s 8.0	69,197 deaths; 374,176 injured
Tohoku, Japan	Mar 11, 2011; 2:46PM; M _w 9.0.	15,000 deaths (~90% drown); 5,250 injured
	Non-Earthquake events	
Oklahoma Federal Building	April 19, 1995; 9AM; (~4,000 pounds TNT)	169 Deaths, 100s injured
World Trade Center	Sep. 11, 2001; 9AM	2,700 deaths, Injuries unknown
Toulouse Plant Explosion, France	Sep. 21, 2001, 10:15AM, (~ M3.4 EQ.)	31 dead, 2,442 injured

Modeled Losses to Workers Compensation				
Scenario	Fatal Injury	Non-Fatal Injuries	Total Casualties	Workers Comp Loss (\$ Million)
Large Anthrax Release - New York City	131,009	1,003,569	1,134,570	\$176,619
Small Anthrax Release - Chicago	26,980	433,759	460,739	\$52,300
M7.0 Earthquake - Los Angeles	4,958	38,573	43,531	\$8,400
10-ton Bomb - New York City	2,045	20,467	22,412	\$2,881
M6.0 Earthquake - New Madrid	385	3,048	3,433	\$621
Sorted by insured loss (\$ Millions) Assumes peak time of date	ay expo	osure		
© 2011 Risk Management Solutions, Inc.	CONFIDE	NTIAL		6

Ρ	Property vs. Workers Comp Exposure		
	Property Exposure	Human Exposure	
	Static Exposure	Location Dependent	
	Known Values	Activity Dependent	
	Limits Specified	Time Dependent	
	Specific Covered Perils	Varied Payouts	
© 2011	Risk Management Solutions, Inc.	CONFIDENTIAL	

Types of Build	dings O	ccupi	ed	
 Type of buildir event affects t RMS Building Example Onl 	ng occupi he severi Inventory y	ed durir ity of inj /	ng an ury	
Building Class	CA	NY	TN	Construction -
Light Metal	2%	3%	8%	
Reinforced Concrete	30%	14%	20%	
Reinforced Masonry	18%	2%	4%	
Steel	21%	34%	33%	
Tilt-Up	8%	3%	5%	Contra 1A
URM	8%	32%	16%	
Bearing Wall	3%	17%	10%	
w/ Load Bearing Frame	4%	16%	5%	
Wood	13%	10%	14%	Contraction of the second
TOTAL	100%	100%	100%	
© 2011 Risk Management Solutions, Inc.		CONFIDEN	ITIAL	

Injury State	Description
Medical Only	Minor injury that can be easily treated and will not cause any permanent impairment. For WC, this does not result in any indemnity benefit because the duration of the injury or illness falls within the "waiting period" for workers compensation benefits.
Temporary Total	Injury that results in an individual's inability to work and/or function for some period of time but from which the individual can fully recover within a reasonably short period of time (e.g., an individual breaks a limb).
Permanent Partial – Minor	A permanent injury that results in only partial disability, that is, the individual can continue to work or function normally in some fashion. Minor injuries might include loss of a toe or finger, respiratory problems, and so on. Typically, this is a 0%-25% disability.
Permanent Partial – Major	Similar to Permanent Partial – Minor. However, these injuries result in 25%- 100% disability. Examples include loss of a leg, loss of an eye, etc.
Permanent Total	The most severe type of non-fatal injury, these individuals fall into a total (100%) disability state. Typically, this is the most expensive type of injury as disability is permanent & the individual is unable to work again. Examples include loss of all limbs, paralysis, & other debilitating injuries.
Fatal	Death

Overview of Terrorism and Earthquake Model Methodology

U.S. Earthquake Casualty Model Highlights Incorporates the base U.S. earthquake peril and hazard model Reflects the latest research and assessment of casualties in building collapses Casualty rates linked to spectral displacement and collapse rates Includes geographically enhanced inventory databases

 Simulation-based methodology employed for the calculation of injury cost severities

Development of Casualty Rates

- Earthquake casualties are modeled using spectral displacement an advantage over using Modified Mercalli Intensity (MMI)
- Research casualty statistics from over 135 earthquakes worldwide (including 35 from U.S.)
- Correlate observed statistics with building construction and occupancy types
- Casualty rate curves are directly linked to probabilities of collapse and heavy damage by construction class allowing better modeling of extremes given a mean level of damage
 - Correlate observed statistics with building construction and occupancy types
- Calibration of casualty model against historical events (Northridge, Loma Prieta, past scenario studies for New Madrid, Charleston, Boston MA, Alaska, Hawaii, Washington State, etc.)
 - Includes detailed investigation of major events
 - Earthquake: Northridge, Loma Prieta, Kobe, Chi-Chi, Athens, Turkey
 - Non-EQ: WTC, Oklahoma Federal Building

High Rise Structures

- High-rise buildings have strict seismic codes collapse is a low probability, high consequence event
- High-rise structures are more likely to collapse because of long period ground motion or ground motion amplification, which often occurs a long distance from the fault
- High-rise structures are most commonly found in central business districts where there are high concentrations of workers

Amount insured

2011 Risk Management Solutions, Inc.

- Does the policy include terrorism coverage?
- Do standard fire policy regulations apply?
- Do exclusions apply, such as CBRN?
- Location of insured assets and/or individuals
 - Geographically focused, small-footprint events create need for quality address info
- Vulnerability of insured assets and/or individuals
- Mainly a function of building construction and height

- Casualty MCR = # of people injured / # of
 - people exposed Injury levels: Medical only, temporary total, permanent partial – minor, permanent partial – major, permanent total, fatal

igement Solutions, Inc

© 2011 Risk Management Solutions, Inc. CONFIDENTIAL