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CS-19 Using Models With Uncertainty
Applying Postmodern “Robust” Decision Theory
John A. Major, Director of Actuarial Research
CARe 2012

Antitrust slide

• The Casualty Actuarial Society is committed to adhering strictly to the letter 
and spirit of the antitrust laws.  Seminars conducted under the auspices of 
the CAS are designed solely to provide a forum for the expression of various 
points of view on topics described in the programs or agendas for such 
meetings.

• Under no circumstances shall CAS seminars be used as a means for 
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• Under no circumstances shall CAS seminars be used as a means for 
competing companies or firms to reach any understanding – expressed or 
implied – that restricts competition or in any way impairs the ability of 
members to exercise independent business judgment regarding matters 
affecting competition.

• It is the responsibility of all seminar participants to be aware of antitrust 
regulations, to prevent any written or verbal discussions that appear to 
violate these laws, and to adhere in every respect to the CAS antitrust 
compliance policy.

1May 14, 2012

The Problem

• I’m accustomed to using my risk model in decision making.  

• Trouble is, I believed it.  
– Now I find out there’s a material degree of uncertainty in the results.

• What am I supposed to do about it?
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“As far as the laws of mathematics 
refer to reality, they are not certain; 
and as far as they are certain, they 
do not refer to reality.”

- Albert Einstein
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The solution

• Run a parallel analysis using the most dangerous alternative model.

• Use those results to inform your decision making.
– Identify robust strategies that work well for the base and worst case
– “Protect your downside”

Guy Carpenter 3May 14, 2012

“People talk about black swans but they
don't talk about robustness, which is
the real lesson of the black swans.”

- Nassim Taleb

Example: evaluation of reinsurance programs

Program Baseline
Rank

Alternate 
Rank

A 1 4

B 2 1

C 3 5

D 1 3
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D 1 3

E 1 2

Approaches to dealing with uncertainty
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Risk versus uncertainty
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Traditional approaches to dealing with uncertainty (1)
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Hypothetical repeated versions
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Traditional approaches to dealing with uncertainty (2)
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Pros and cons of traditional approaches

Approach Pro Con

Ignore uncertainty Easiest Surprise!

Confidence intervals Fullest expression of 
uncertainty

Now what do I do with it?

Bayesian estimates Actionable answer 
incorporates uncertainty

Hardest, requires more 
assumptions, subtleties
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A new approach

Approach Pro Con

Ignore uncertainty Easiest Surprise!

Confidence intervals Fullest expression of 
uncertainty

Now what do I do with it?

Bayesian estimates Actionable answer, 
incorporates uncertainty

Hardest, requires more 
assumptions, subtleties

Robust control Actionable answer, full Complex implementation, 
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Robust control Actionable answer, full 
expression of uncertainty, 
minimal assumptions

Complex implementation, 
novelty of concept
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What is robust control?

Statistics
+

Game Theory
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Plausibility
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Utility
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Favorable Adverse

Complication: We are on the outside looking in
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Our key simplifications and assumptions

• Discrete probability distributions

• Known sample size

• Baseline model is ML

• Prior symmetry
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MIRANDA: the most dangerous model

Guy Carpenter
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Favorable Adverse

Sample Size + ML + Prior symmetry = Posterior Expected Disutility

The most 
dangerous 

model

Posterior
Expected
Disutility
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MIRANDA
(Maximum Impact Realized Adverse Non-Detectable Alternative)

0 0.1 0.2 0.3 0.4

Detection probability

Conditional
Disutility
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Mathematics of MIRANDA

Maybe some other time.
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Maybe some other time.
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What does MIRANDA look like?
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Reinsurance XOL and cat bond pricing
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Case study: reinsurance decision
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Five programs to consider; all available at $0.32

Program Attach-
ment

Pr{Att} Limit Coverage EL

A 25 0.7% 9 100% $0.050

B 25 0.7% 14 50% $0.049

C 22 0.9% 8 100% $0.057

D 22 0.9% 11 50% $0.053

E1,
2

25
27

0.7% 2
10

100%
50%

$0.050

Baseline 
cat model
statistics
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Evaluation of programs under baseline

Program Loss 
Cost

Reduc-
tion

Surplus
Deficit

Reduc-
tion

Score

Bare 1.527 - 0.130 -

A 1.477 3.3% 0.080 38.4% 20.9%

B 1.478 3.2% 0.081 37.4% 20.3%

C 1.470 3.7% 0.084 35.3% 19.5%

D 1.474 3.4% 0.080 38.3% 20.9%

These 3 
look quite
comparable.
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E 1.477 3.3% 0.080 38.4% 20.9%
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Evaluation of programs under MIRANDA

Program Loss 
Cost

Reduc-
tion

Surplus
Deficit

Reduc-
tion

New
Score

Previous 
Score

Bare 3.530 - 1.311 -

A 3.256 7.8% 1.037 20.9% 14.3% 20.9%

B 3.171 10.1% 0.953 27.3% 18.7% 20.3%

C 3.265 7.5% 1.065 18.8% 13.1% 19.5%

D 3.216 8.9% 1.001 23.6% 16.3% 20.9%
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E 3.202 9.3% 0.983 25.0% 17.1% 20.9%

Program E holds up well under both models

Robust

Summary

• The Problem
– I’m accustomed to using my risk models in decision making.  
– Trouble is, I believed them.  Now I find out there’s a material degree of 

uncertainty in the results.
– What am I supposed to do about it?
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• The Solution
– Run a parallel analysis using MIRANDA: the most dangerous model.
– Use those results to inform your decision making.  Identify robust

strategies that work well for the best estimate and worst case.  
– “Protect your downside.”
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