

Best estimate (no-uncertainty) analysis		
Data <mark>→</mark> Parameters →	Model	
	Ļ	
• Give us your best guess	Best Estimate	
Guy Carpenter May 9, 2014		5

Fitting a collective risk model for aggregate losses			
	"Normal" (<\$100k) losses	"Large" losses	
Individual losses	λ=3,545 μ=\$7,639 σ=\$12,845	λ =26.4 Pareto α =1.505 (up to policy limit \$25mm)	
Aggregate losses	Well-represented by a normal distribution mean = \$27.1mm stdev = \$0.89mm VaR99.6 = \$29.4mm	Must be evaluated numerically (e.g., simulation, FFT,) mean = \$7.6mm stdev = \$4.0mm VaR99.6 = \$31.9mm	
	Combined, all losses		
Aggregate losses	mean = \$34.6mm stdev = \$4.1mm VaR99.6 = \$59.1mm		
Premiums & Expenses	Premiums = \$34.6/60% = \$57.7 Expenses = Premiums*30% = \$17.3 Premium and expense assumptions are fixed; they do not vary with parameters		
Guy Carpenter	May 9, 2014		

Evaluate alternatives at best estimate (MLE)

- How much capital is charged against the risk?
- Pr{ Capital + NetPremium Expenses NetLosses < 0 } ≤ 0.4%</p>
- Capital = VaR_{99.6%}{ Losses RIrecovery } + RIprem 40.4

• Evaluate over the alternatives

(Retention)	Required Capital	Objective: Economic Underwriting Gain
\$1mm	3.93	-1.582
2	4.83	0.167
5	6.87	1.400
10	9.51	2.131
20	15.41	(2.512) Best
Bare	18.68	2.497 Close 2 nd

"Normal" (<\$100k) losses	"Large" losses
λ =3,545: s.e. = 22.5;	λ =26.4: s.e. = 1.94;
Double for uncertainty in projecting	Double for uncertainty in projecting
historical rates	historical rates
s.e. = 45.0	s.e. = 3.89
μ=\$7,639: s.e. = 81.5;	Pareto α=1.505: s.e. = 0.111;
Double for uncertainty in trending	Double for uncertainty in trending
and developing	and developing
s.e. = 163.1	s.e. = 0.221
σ=\$12,845: s.e. = 57.7 Double for uncertainty in trending and developing s.e. = 115.3 Mutually independent	Mutually independent, and independent from normal loss parameters

How does parameter uncertainty translate to output uncertainty? Simplest version of uncertainty propagation – the delta method

- Uncertain input parameters θ₁, θ₂, ..., θ_m
 covariance matrix cov(θ₁, θ₁) = Σ₁
- Output quantity of interest $Y(\theta_1, ..., \theta_m)$

.

· Second-order Taylor expansion of variance

$$\operatorname{var}(Y) \approx (\nabla Y)^T \Sigma (\nabla Y)$$

where $\nabla Y = \left\langle \frac{\partial Y}{\partial \theta_1}, \frac{\partial Y}{\partial \theta_2}, \dots, \frac{\partial Y}{\partial \theta_m} \right\rangle^T$
If uncorrelated, just look at the diagonal terms $\left(\frac{\partial Y}{\partial \theta_i} \right)^2 \cdot \sigma_i^2$

Conclusions from uncertainty audit

- Conclusion 1: Total standard error on EUG Bare is \$2.93mm
 - This is larger than the 2.50 best estimate! (true of other XPRs, too)
- Conclusion 2: Normal loss parameters are relatively unimportant
 Large loss parameter uncertainty covers 90% of the EUG variance (xs1: 73%)
- In subsequent analysis, we will treat them as if they were known with certainty and only
- allow large loss parameters to vary.

Parameter	Sensitivity	Uncertainty (std. err.)	Induced o	% of total variance	
Normal loss frequency	-0.010	x 45.0 =	= \$0.47mm	2.5%	
" " severity mean	-0.005	\$163.1mm	0.82	7.9	
" " severity std. dev.	~0	\$115.3mm	~0	~0	
Large loss frequency	-0.356	3.89	1.38	22.3	60
" " Pareto tail index	<i>(3.447-)*</i> 10.856	0.221	<i>(0.76-)*</i> 2.40	67.3	.0,
*(Low-	retention XPR alte	rnatives were less s	sensitive to chang	ges in Pareto alpha)	
3uy Carpenter		May 9, 2014			

May 9, 2014

12

(2) Posterior mean EUG Average the EUG results over the parameter probability distribution

• Which decision alternative does the best "on average," that is, averaging over all parameter values according to their posterior probabilities?

	Decision (Retention)	Best Est. Economic Underwriting Gain	Posterior Mean EUG
	\$1mm	-1.582	-1.680
	2	0.167	-0.112
	5	1.400	0.934
	10	2.131	1.477
	20	(2.512) Best	1.773 Close 2nd
	Bare	2.497 Close 2 nd	(1.855) Best
enter		May 9, 2014	

• Which alternative does best "overall," that is, treating uncertainty as part of the loss-generating process?

\$1mm -1.582 -1.680 -1.778 2 0.167 -0.112 -0.214 5 1.400 0.934 0.815 10 2.131 1.477 1.315
2 0.167 -0.112 -0.214 5 1.400 0.934 0.815 10 2.131 1.477 1.315
5 1.400 0.934 0.815 10 2.131 1.477 1.315
10 2.131 1.477 1.315
20 (2.512) 1.773 (1.626) Best
Bare 2.497 (1.855) 1.566 Close 2 nd

Evaluate the alternatives at the natural stress test points

• Which alternative performs best under its worst credible circumstances?

Decision	Best Est. EUG	Posterior Mean EUG	Predictive EUG	EUG of Credible Worst Case
\$1mm	-1.582	-1.680	-1.778	-3.634
2	0.167	-0.112	-0.214	-2.838 Close 2
5	1.400	0.934	0.815	(-2.727) Best
10	2.131	1.477	1.315	-3.188
20	(2.512)	1.773	1.626	-4.661
Bare	2.497	1.855	1.566	-5.205
	No uncertainty	Treating unce	rtainty like risk	Uncertainty stress test
arpenter		May 9, 2014		

Summary

• The four stages:

- Best Estimate = "Give us your best guess"
- Uncertainty Audit = "How wrong might you be (and why)?"
- Bayes = "Treat uncertainty as another risk and update your answer"
- Robust Bayes = "How do we protect the firm from Murphy's Law?"
- You already know how to do the first three; the fourth isn't much harder

May 9, 2014

32

Call to action

- The point: "model risk" is alive and well
- Your client deserves an effort to address it
 - ASOPs 17, 36, 41, 43; modeling exposure draft
- No excuse for pretending or implying it doesn't exist
 - "...silence would have made me feel guilty of complicity" Einstein

May 9, 2014

- Yes, it's going to take many model runs
- ...or at least many runs of a surrogate model
- Plan to build out your capabilities accordingly
- Go forth and make the world a better place!

