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OVERVIEW

A new data source: Imperial-IICI dataset

Insurance Intellectual Capital Initiative (IICI)

Bronek Masojada (Hiscox), James Slaughter (Liberty Mutual), Rob
Caton (Hiscox)
Lloyd’s of London

Focus on Large Commercial Risks (LCR)

Commercial Property, On-shore Energy; non-natural hazards

Implications for reserving and capital modeling (joint work with Davide
Benedetti, Erik Chavez [Imperial]; with Andreas Milidonis [Nanyang] for
Asia-Pacific region)

Tail risk estimation

Benchmarking exercise (market loss curves & scaling factors)
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LCR

LCR largely non-modelled risks

Heterogeneity of exposures by type and size

Complex relation between hazard events and losses

Paucity of data for model estimation/validation

Implications

Considerable degree of judgment in pricing/reserving decisions

Reported claims may not reflect true risk of business

Pricing variability makes it difficult for corporates to budget for insurance
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DATASET

Around 3,200 FGU claims and exposures based on brokers’ submissions

Scope: worldwide, 1999-2012

Granular classification of exposures by three occupancy levels

Definitions based on Lloyd’s codes & individual syndicates’
classification; can be related to ISO/PSOLD classification

Anonymized claim narratives available

Example:

Region Country Risk Code Occupancy 1 Occupancy 2 Occupancy 3
NoA US P2 RE R 51

(Physical damage for (residential) (residential) (Large Hotels)
primary layer property;

USA; excluding binders)
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OCCUPANCY EXAMPLE - LEVEL 2 LIST

Code Definition Code Definition
A Miscellaneous Q Offices/Banks
B Manufacturers/Processors R Residential
C Chemicals/Pharmaceuticals T Transport
D Bridges/Dams/Tunnels/Piers U Utilities
E Conglomerates V Telecoms and Data Processing
F Food W Woodworkers (Sawmills, Papermills)
G Grain X Onshore Crude
H General Mercantile/Shops Y Onshore GasPlants
J Mines Z Onshore Construction
K Crops 2 Hospital/Health care centres
L Auto 4 Semiconductor/Fabs
M Metals 5 Motor Manufaturers
O Municipal Property 6 Warehouses
P Energy (Oil Refineries/Petrochemicals)
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GEOGRAPHICAL/OCCUPANCY SPLIT

AF (Africa), CA (Central Asia), EU (Europe),

LA (Latin America), ME (Middle East), AS

(Asia-Pacific), NoA (North America), OC

(Oceania), WW (Worldwide).

RE (Residential), CO (Commercial), MA

(Manufacturing), EON (Energy on-shore), Mi

(Miscellaneous).
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OCCUPANCY SPLIT BY CLAIM SIZE
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OCCUPANCY SPLIT BY TIV
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OCCUPANCY SPLIT BY LOCATION

North America Rest of the World
FGU claims > USD 1m
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OCCUPANCY SPLIT BY LOCATION

North America Rest of the World
FGU claims > USD 5m
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VALIDATION

Imperial-IICI data vs. Property Size-of-Loss Database (PSOLD) [John
Buchanan (ISO-Verisk)]

All FGU claims
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VALIDATION - Cross-occupancy comparison

Imperial-IICI data vs. Property Size-of-Loss Database (PSOLD) [John
Buchanan (ISO-Verisk)]

Source: National Fire Protection Association as compiled by ISO Verisk.
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VALIDATION - Cross-country comparison

Imperial-IICI data vs. Property Size-of-Loss Database (PSOLD) [John
Buchanan (ISO-Verisk)]

Source: ISO Verisk.
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VALIDATION - NoA

Imperial-IICI data vs. Property Size-of-Loss Database (PSOLD) [John
Buchanan (ISO-Verisk)]

Source: ISO Verisk.
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TAIL RISK

Tail index (α) estimation: P(Z > z) ∼ Cz−α

Existence of centered moments (mean, variance, etc.)

• Mean/Variance finite if and only if α > 1 (α > 2)

Extent of diversification benefits for quantile-based risk measures

Retain fractions w1, . . . , wn of risks X1, . . . , Xn

Resulting aggregate risk Z(w1,...,wn) =
∑
i wiXi

• V aRp(Z(1,0,...,0)) < V aRp(Z( 1
n ,...,

1
n )) for α ∈ (0, 1), p ∈ (0, 1/2), for

stable distributions (e.g., Ibragimov, 2009)

What do we find for LCR?

Heavy tails & significant heterogeneity across occupancy type
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RESIDENTIAL EXAMPLE (ALL TIVs)

Hill (1975) vs. Gabaix-Ibragimov (2011)’s log-log rank-size regression method with optimal

ranks shift -1/2 and correct standard errors.
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OCCUPANCY LEVEL 1 (ALL TIVs)
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OCCUPANCY LEVEL 1 (ALL TIVs)
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OCCUPANCY LEVEL 3 - Large Hotels
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OCCUPANCY LEVEL 3 - Institutional Housing, Condos, Housing

Associations
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OCCUPANCY LEVEL 2 - Chemicals, Metals, Mines
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BENCHMARKING EXERCISE - A SPECIFIC TIV BAND
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LOSS CURVES HETEROGENEITY

Source: John Buchanan (ISO-Verisk).
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NEXT STEPS

New data source for LCR

Robust estimation of tail risk

Comparing claim costs across occupancy/TIV bands/location

Lessons from Imperial-IICI data collection, validation, and analysis

Link between claims and exposures crucial: Systematic storage of claims &
exposures information (policy schedules & claims narratives in digital,
compatible format) should be a priority

Macro-validation (e.g., Fire Protection Agencies) & micro-validation (e.g.,
syndicate level) of data important for structural understanding of risk

Gains from data aggregation HUGE - please contribute!
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OCCUPANCY LEVEL 1 ‘CO’, α−1: AN INSURER
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OCCUPANCY LEVEL 1 ‘CO’, α−1: MULTIPLE DATA SOURCES
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WORK IN PROGRESS (ASIA-PACIFIC REGION) & NEXT STEPS

Insurance Risk & Finance Research Centre
at Nanyang Business School Singapore

www.irfrc.com

Overview Dataset Estimation Benchmarking Next Steps 37 / 38



Imperial College
London
Business School

THANK YOU

Contact: E.Biffis@imperial.ac.uk
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