Some New Insights into Large Commercial Risks

Enrico Biffis

Imperial College London

CAS Seminar on Reinsurance

New York City May 22, 2014

Overview

Dataset

Estimation

Benchmarking

Next Steps

AGENDA

Overview

Dataset

Overview

Dataset

Estimatio

Benchmarking

Next Steps

AGENDA

Overview

Overview

Dataset

Estimatio

Benchmarking

Next Steps

OVERVIEW

A new data source: Imperial-IICI dataset

- Insurance Intellectual Capital Initiative (IICI)
 - Bronek Masojada (Hiscox), James Slaughter (Liberty Mutual), Rob Caton (Hiscox)
 - Lloyd's of London
- Focus on Large Commercial Risks (LCR)
 - Commercial Property, On-shore Energy; non-natural hazards

4 / 3<u>8</u>

OVERVIEW

A new data source: Imperial-IICI dataset

- Insurance Intellectual Capital Initiative (IICI)
 - Bronek Masojada (Hiscox), James Slaughter (Liberty Mutual), Rob Caton (Hiscox)
 - Lloyd's of London
- Focus on Large Commercial Risks (LCR)
 - Commercial Property, On-shore Energy; non-natural hazards

Implications for **reserving** and capital **modeling** (joint work with Davide Benedetti, Erik Chavez [Imperial]; with Andreas Milidonis [Nanyang] for Asia-Pacific region)

- Tail risk estimation
- Benchmarking exercise (market loss curves & scaling factors)

LCR

LCR largely non-modelled risks

- Heterogeneity of exposures by type and size
- Complex relation between hazard events and losses
- Paucity of data for model estimation/validation

Implications

- Considerable degree of judgment in pricing/reserving decisions
- Reported claims may not reflect true risk of business
- Pricing variability makes it difficult for corporates to budget for insurance

AGENDA

Dataset

Overview

Dataset

Estimatio

Benchmarking

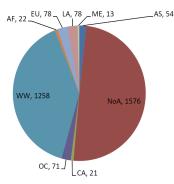
Next Steps

DATASET

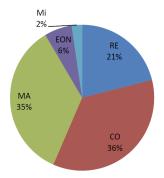
- Around 3,200 FGU claims and exposures based on brokers' submissions
- Scope: worldwide, 1999-2012

DATASET

- Around 3,200 FGU claims and exposures based on brokers' submissions
- Scope: worldwide, 1999-2012
- Granular classification of exposures by three occupancy levels
 - Definitions based on Lloyd's codes & individual syndicates' classification; can be related to ISO/PSOLD classification
- Anonymized claim narratives available
- Example:

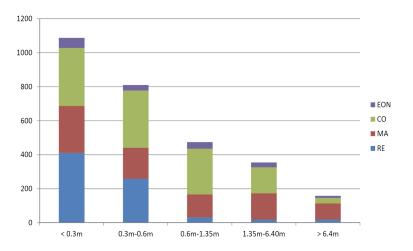

Region	Country	Risk Code	Occupancy 1	Occupancy 2	Occupancy 3
NoA	US	P2 (Physical damage for primary layer property; USA; excluding binders)	RE (residential)	R (residential)	51 (Large Hotels)
Overview	Data	set Estimation	Benchmarking	s Next S	Steps 7 / 38

OCCUPANCY EXAMPLE - LEVEL 2 LIST


Code	Definition	Code	Definition
A	Miscellaneous	Q	Offices/Banks
В	Manufacturers/Processors	R	Residential
С	Chemicals/Pharmaceuticals	Т	Transport
D	Bridges/Dams/Tunnels/Piers	U	Utilities
Е	Conglomerates	V	Telecoms and Data Processing
F	Food	W	Woodworkers (Sawmills, Papermills)
G	Grain	Х	Onshore Crude
Н	General Mercantile/Shops	Y	Onshore GasPlants
J	Mines	Z	Onshore Construction
K	Crops	2	Hospital/Health care centres
L	Auto	4	Semiconductor/Fabs
М	Metals	5	Motor Manufaturers
0	Municipal Property	6	Warehouses
P	Energy (Oil Refineries/Petrochemicals)		

Overview

GEOGRAPHICAL/OCCUPANCY SPLIT

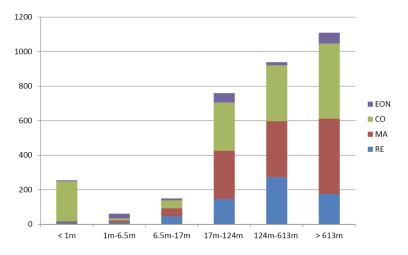


AF (Africa), CA (Central Asia), EU (Europe), LA (Latin America), ME (Middle East), AS (Asia-Pacific), NoA (North America), OC (Oceania), WW (Worldwide).

RE (Residential), CO (Commercial), MA (Manufacturing), EON (Energy on-shore), Mi (Miscellaneous).

OCCUPANCY SPLIT BY CLAIM SIZE

Overview


Dataset

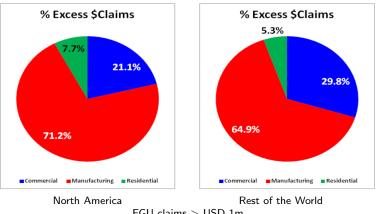
Estimation

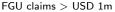
Benchmarkin

Next Steps 10

OCCUPANCY SPLIT BY TIV

Overview

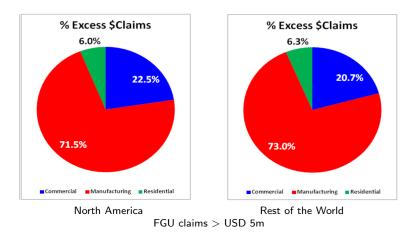

Dataset E


on Benc

Benchmarking

Next Steps

OCCUPANCY SPLIT BY LOCATION


Overview

Dataset

Benchmarking

Next Steps

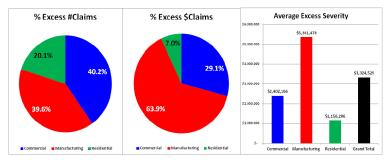
OCCUPANCY SPLIT BY LOCATION

Overview

Dataset

Estimatior

Benchmarking


Next Steps

VALIDATION

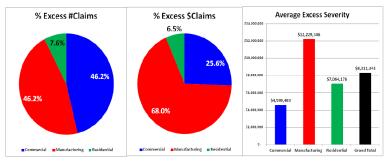
Overview

Dataset

 Imperial-IICI data vs. Property Size-of-Loss Database (PSOLD) [John Buchanan (ISO-Verisk)]

All FGU claims

Benchmarking


Next Steps

14 / 38

Estimation

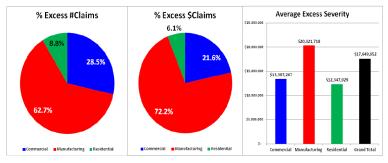
VALIDATION

 Imperial-IICI data vs. Property Size-of-Loss Database (PSOLD) [John Buchanan (ISO-Verisk)]

 $\mathsf{FGU\ claims} > \textbf{USD\ 1m}$

Overview

Dataset


Estimation

Benchmarking

Next Steps 15 / 38

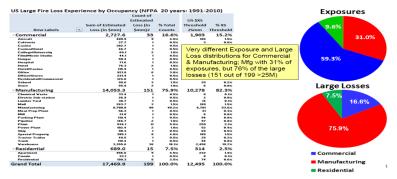
VALIDATION

 Imperial-IICI data vs. Property Size-of-Loss Database (PSOLD) [John Buchanan (ISO-Verisk)]

 $\mathsf{FGU\ claims} > \textbf{USD\ 5m}$

Overview

Dataset


Estimation

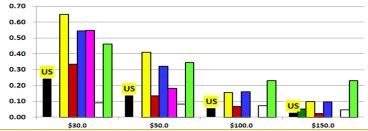
Benchmarking

Next Steps 16 / 38

VALIDATION - Cross-occupancy comparison

 Imperial-IICI data vs. Property Size-of-Loss Database (PSOLD) [John Buchanan (ISO-Verisk)]

Source: National Fire Protection Association as compiled by ISO Verisk.


Overview

Benchmarking

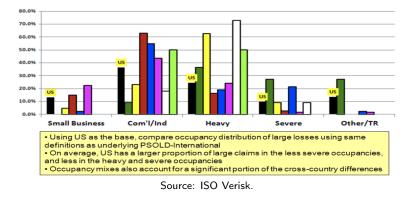
Next Steps

VALIDATION - Cross-country comparison

 Imperial-IICI data vs. Property Size-of-Loss Database (PSOLD) [John Buchanan (ISO-Verisk)]

 Using US as the base, compare # of large claims per \$B of total commercial property premium in excess of various thresholds. Shown are thresholds ranging from \$30M to \$150M
Although varies significantly by country, the number of large claims on average is 40-50% higher than the US for these largest claims

Protection/ sprinkler differences may account for a significant portion of the US vs. non-US experience


Source: ISO Verisk.

Estimation Benchmarking

Next Steps

VALIDATION - NoA

 Imperial-IICI data vs. Property Size-of-Loss Database (PSOLD) [John Buchanan (ISO-Verisk)]

Overview

Dataset

Estimation

Benchmarking

Next Steps

AGENDA

Next Steps

Overview

Dataset

Estimation

Benchmarking

TAIL RISK

Tail index (α) estimation: $\mathbb{P}(Z > z) \sim Cz^{-\alpha}$

Overview

Next Steps

TAIL RISK

Tail index (α) estimation: $\mathbb{P}(Z > z) \sim Cz^{-\alpha}$

- Existence of centered moments (mean, variance, etc.)
 - Mean/Variance finite if and only if $\alpha > 1$ ($\alpha > 2$)

• Extent of diversification benefits for quantile-based risk measures

- Retain fractions w_1, \ldots, w_n of risks X_1, \ldots, X_n
- Resulting aggregate risk $Z_{(w_1,\ldots,w_n)} = \sum_i w_i X_i$
- $VaR_p(Z_{(1,0,\ldots,0)}) < VaR_p(Z_{(\frac{1}{n},\ldots,\frac{1}{n})})$ for $\alpha \in (0,1), p \in (0,1/2)$, for stable distributions (e.g., Ibragimov, 2009)

Overview

Estimation

Benchmarking

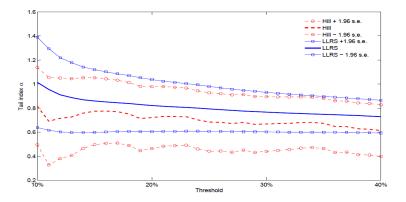
Next Steps

<u>21</u> / 38

TAIL RISK

Tail index (α) estimation: $\mathbb{P}(Z > z) \sim Cz^{-\alpha}$

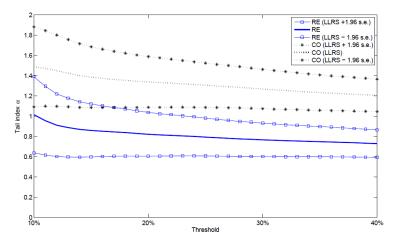
- Existence of centered moments (mean, variance, etc.)
 - Mean/Variance finite if and only if $\alpha > 1$ ($\alpha > 2$)


• Extent of diversification benefits for quantile-based risk measures

- Retain fractions w_1, \ldots, w_n of risks X_1, \ldots, X_n
- Resulting aggregate risk $Z_{(w_1,\ldots,w_n)} = \sum_i w_i X_i$
- $VaR_p(Z_{(1,0,\ldots,0)}) < VaR_p(Z_{(\frac{1}{n},\ldots,\frac{1}{n})})$ for $\alpha \in (0,1), p \in (0,1/2)$, for stable distributions (e.g., Ibragimov, 2009)

What do we find for LCR?

• Heavy tails & significant heterogeneity across occupancy type

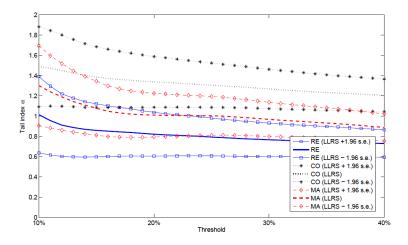

RESIDENTIAL EXAMPLE (ALL TIVs)

Hill (1975) vs. Gabaix-Ibragimov (2011)'s log-log rank-size regression method with optimal ranks shift -1/2 and correct standard errors.

Overview Dataset Estimation Benchmarking Next Steps 22 / 38

OCCUPANCY LEVEL 1 (ALL TIVs)

Overview


Dataset Es

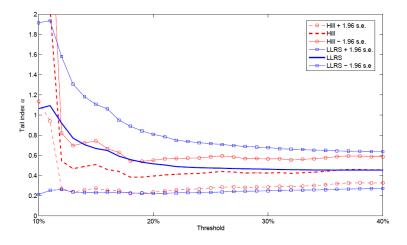
Estimation

Benchmarkin

Next Steps

OCCUPANCY LEVEL 1 (ALL TIVs)

Overview


Dataset

Estimation

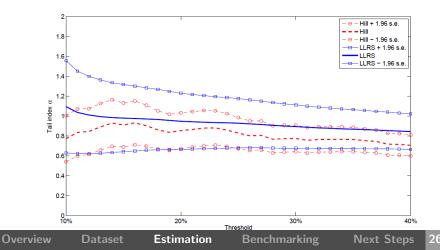
Benchmarkin

Next Steps

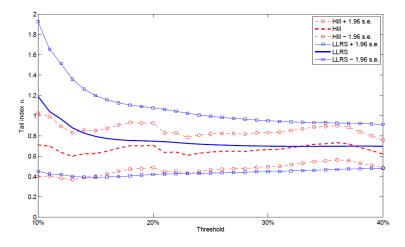
OCCUPANCY LEVEL 3 - Large Hotels

Overview

Dataset


Estimation

Benchmarkin


Next Steps

OCCUPANCY LEVEL 3 - Institutional Housing, Condos, Housing

Associations

OCCUPANCY LEVEL 2 - Chemicals, Metals, Mines

Overview

Dataset Es

Estimation

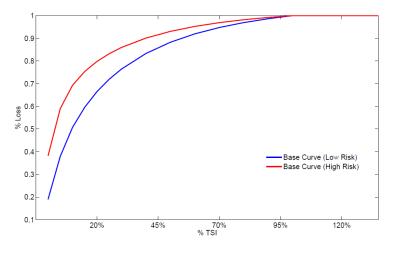
Benchmarking

Next Steps

AGENDA

Next Steps

Overview

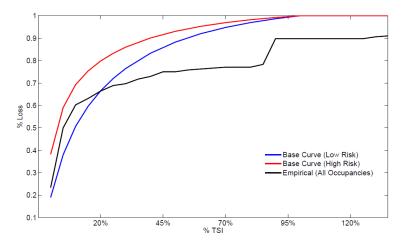

Dataset

Estimatio

Benchmarking

Next Steps

BENCHMARKING EXERCISE - A SPECIFIC TIV BAND


Overview

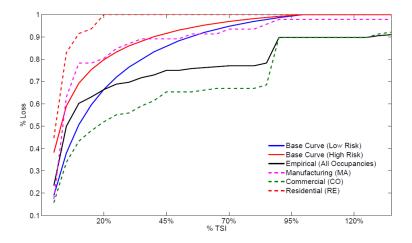
Dataset

Estimation

Next Steps 29 / 38

BENCHMARKING EXERCISE - A SPECIFIC TIV BAND

Overview

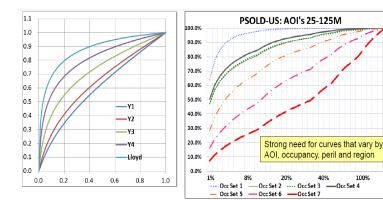

Dataset I

timation

Benchmarking

Next Steps

BENCHMARKING EXERCISE - A SPECIFIC TIV BAND


Overview

Dataset

Estimation

Next Steps

LOSS CURVES HETEROGENEITY

Source: China Re CPCR curve comparison MBBEFD (Y1-Y4) parametric approximation; Lloyd's empirical from unknown data source PSOLD has over 1 million individual curves for 60 AOI bands, 38 occupancies, 4 sets of perils, 50 states, etc.; some collapse to between 500 and 1,000 curves

32 / 38

Next Steps

Source: John Buchanan (ISO-Verisk).

Overview

Dataset

Estimation

Benchmarking

AGENDA

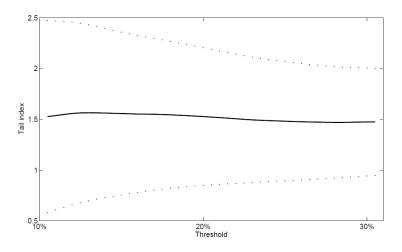
Overview

NEXT STEPS

New data source for LCR

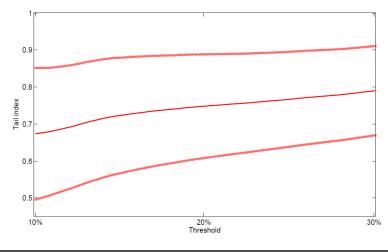
- Robust estimation of tail risk
- Comparing claim costs across occupancy/TIV bands/location

NEXT STEPS


New data source for LCR

- Robust estimation of tail risk
- Comparing claim costs across occupancy/TIV bands/location

Lessons from Imperial-IICI data collection, validation, and analysis


- Link between claims and exposures crucial: Systematic storage of claims & exposures information (policy schedules & claims narratives in digital, compatible format) should be a priority
- Macro-validation (e.g., Fire Protection Agencies) & micro-validation (e.g., syndicate level) of data important for *structural* understanding of risk
- Gains from data aggregation HUGE please contribute!

OCCUPANCY LEVEL 1 'CO', α^{-1} : AN INSURER

Overview

OCCUPANCY LEVEL 1 'CO', α^{-1} : MULTIPLE DATA SOURCES

Overview

Dataset

Next Steps 36 / 38

WORK IN PROGRESS (ASIA-PACIFIC REGION) & NEXT STEPS

Insurance Risk & Finance Research Centre at Nanyang Business School Singapore

www.irfrc.com

Overview

Dataset

Estimation

Benchmarking

Next Steps

THANK YOU

Contact: E.Biffis@imperial.ac.uk

Overview

Dataset

Estimation

Benchmarking

Next Steps