Challenges and Solutions in Large Scale Storm Surge Modeling

Mark Hope, Ph.D.

Simulating Storm Surge

So What is So Challenging About Storm Surge Modeling, Anyway?

- Chaotic Meteorological Conditions
- Dynamic Coastal Environment
- Spatial Resolution
- Scales of Processes

Calculating Surge and Associated Damage on Various Scales

What Spatial and Temporal Time Scales Are We **Concerned With?**

What Spatial and Temporal Time Scales Are We Concerned With?

Spatial Resolution Example

Spatial Resolution Example

Simulating Surge Locally is (relatively) Easy, but...

- Let's theorize a domain that encompasses the entire US coastline at 100m resolution
 - If we (very coarsely) estimate the length of the US coastline to be 6000km
 - Extend that domain inland 5km and 10km offshore
 - 300 million nodes!

- For comparison the grid on the right ^{20°} contains 9 million nodes
- It required 80 minutes to simulate one day on 2200 cpus

Single Domain Approach

Parallelization

Parallelization & Computational Focus

Method 1: Nesting

Method 2: Local Simulation

Example of Local Simulation: SLOSH

AIR

Example of Local Simulation: AIR Surge Model

Other Considerations

Tides Are a Complex, Non-linear Process

Tides Vary Spatially and Temporally

AIR

Waves Are an Even More Complex Phenomena to Capture than Storm Surge Computationally

- Storm Surge
 - 3 Variables to solve for at every time step
 - water elevation, currents in x and y directions
- Waves
 - 1 Variable to solve for at every time step
 - Must be computed in each direction at each frequency
 - Longer time step than storm surge

AIR

NOAA Buoy 42001 @ 9/11/2008 0800Z

Wave Damage Varies Much More than Surge Damage

And there will always be some things we'll never be able to capture...

Conclusions

- The tools and data (for the most part) already exist to accurately simulate storm surge
- The eternal struggle of the storm surge modeler is finding the balance between resolving relevant surge processes and computational limitations
- Function will often dictate form
 - Single event or location analysis → high resolution, spatially limited domain
 - Multi-event or continental scale analysis → spatially broad domain, often split into multiple high resolution domains
- Non surge processes (tides, waves) can impact water levels and losses, but may adversely impact computation
- An accurate surge model is only one part of an accurate catastrophe model

Thank You!

