Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.

Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.

It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Intermediate Experience Rating: Not All Models are Wrong

CAS Seminar on Reinsurance June 1-2, 2015

David R. Clark

Agenda

- 1. Experience Rating as a GLM
 - Selection of Weights
 - Testing assumptions
- 2. XOL Treaties and Policy Limit "Drift"
 - Testing for PL Drift
 - Adjusting for PL Drift
- 3. Property Experience Rating for Occurrence Layers
- 4. Proportional Treaties on Umbrella and Trend on "Missing" losses

Preliminaries

Accident Year	Onlevel Premium	LDF	Trended Loss	Loss Rate (estimator)
2005 2006 2007 2008 2009 2010 2011 2012 2013				
				?

$$ELR_i = \frac{E[Loss_i \cdot LDF_i]}{Premium_i}$$

What is the "right" way to use this information to estimate a single ELR?

Experience Rating as a GLM

Each year in the experience period gives us one estimate of the ELR.

$$ELR_i = \frac{E[Loss_i \cdot LDF_i]}{Premium_i}$$

We can rearrange these terms into a linear model (equivalently GLM with identity link function). Letting Y = losses reported-to-date.

$$E[Loss_i] = \left(\frac{Premium_i}{LDF_i}\right) \cdot ELR$$

$$E[Y] = X \cdot \beta$$

$$Var(Y) = \phi \cdot E[Y]^p$$

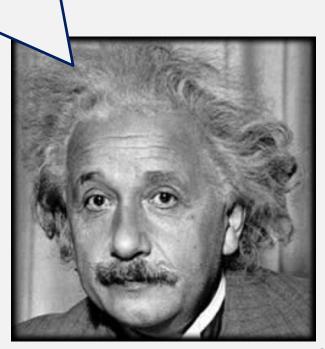
Experience Rating as a GLM

Several examples re-casting this as GLM, with identity link and alternative variance structures. Each variance function leads to a different estimator.

GLM	<u>Variance</u>	Best Estimator
Overdispersed Poisson	$Var(Y) = \phi \cdot E[Y]^1$	$\widehat{ELR} = \frac{\sum Loss_i}{\sum Prem_i/LDF_i}$
Overdispersed Poisson	$Var(Y) = \phi \cdot \left(\frac{1}{LDF_i}\right) \cdot E[Y]^1$	$\widehat{ELR} = \frac{\sum Loss_i \cdot LDF_i}{\sum Prem_i}$
Gamma	$Var(Y) = \phi \cdot E[Y]^2$	$\widehat{ELR} = \frac{1}{n} \sum \frac{Loss_i \cdot LDF_i}{Prem_i}$

Y = Trended losses reported-to-date

Experience Rating as a GLM



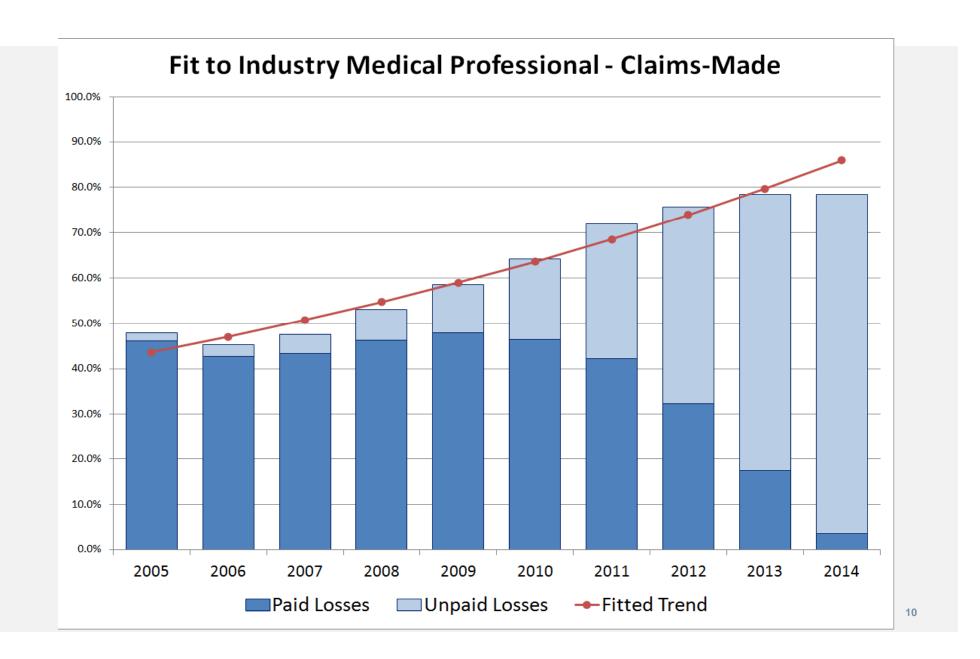
What does this get us?

- Guidance for best weighting scheme
 - Including how to give weight to recent partially-earned year
- Standardized residuals to test model assumptions (is there a remaining trend or cycle?)
- Criteria for deciding to include additional information
- Ability to perform multiple experience ratings in a single model that shares some parameters

No amount of experimentation can ever prove me right; a single experiment can prove me wrong.

Another quote:

"A model for data, no matter how elegant or correctly derived, must be discarded or revised if it does not fit the data or when new or better data are found and it fails to fit them."


- Paul Velleman

"Truth, Damn Truth, and Statistics" in the Journal of Statistical Education, 2008.

Standard part of the experience rating model is the assumption that, after adjustments to current level, the *ELR* is constant over time.

Does this assumption "fit" the data?

Each year in the experience period gives us one estimate of the ELR.

$$ELR_i = \frac{E[Loss_i \cdot LDF_i \cdot (1+t)^i]}{Premium_i}$$

We can again rearrange these terms into a GLM with "log-link" and then test the significance of the trend.

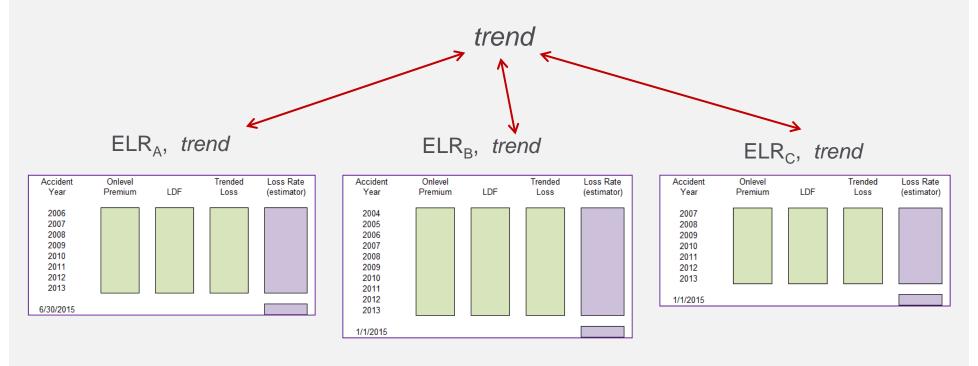
$$E[Loss_{i}] = \left(\frac{Premium_{i}}{LDF_{i}}\right) \cdot ELR \cdot (1+t)^{i}$$

$$E[Y] = w_{i} \cdot exp(\beta_{0} + i \cdot \beta_{1})$$

$$Var(Y) = \phi \cdot E[Y]^{p}$$

We can estimate trend via GLM, even if some years have zero losses.

Pricing factors (frequency, severity trends, benefit changes, rate changes, etc) are interpreted as *explanatory variables*. We want to test how well they explain movements in the data.


If the "residual trend" on the historical experience is zero (or not significantly different than zero), then we conclude the pricing factors were effective.

For a single treaty, a residual trend may not be significant. We can run multiple GLMs simultaneously to test if there is a residual trend to the portfolio.

If we observe a residual trend that is consistent across accounts, it may indicate a systemic problem in the market segment.

Simultaneous GLMs (or alternatively, mixed models) can help detect systemic effects.

Examples of Changes in Experience:

Three Problems... One Solution!

Policy Limit "Drift"

<u>The problem:</u> when pricing Casualty nonproportional (aka XOL) treaties, there may be more policies that expose the layers in some years than in other years.

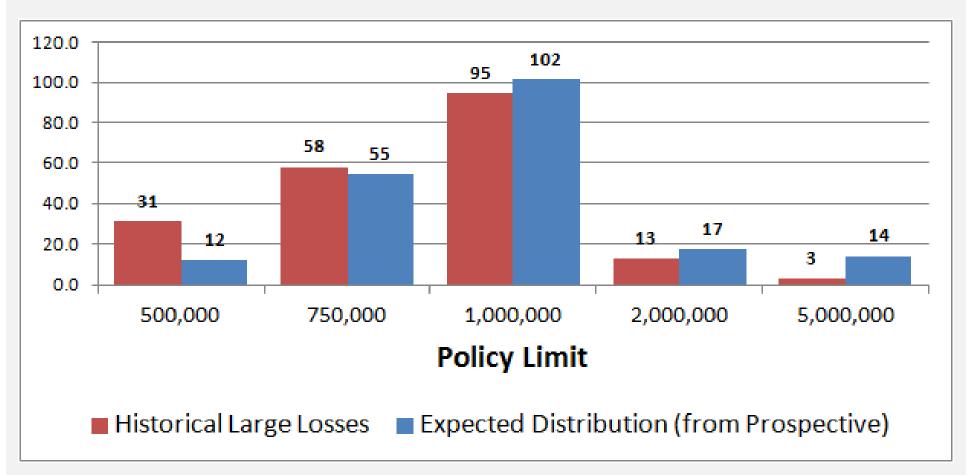
If the policy limits or hazard classes are different in the historical period than in the prospective period, then the experience rating will be biased.

To address this, we need information on the policy limit distribution.

- Testing for Policy Limit Drift
- Adjusting for Policy Limit Drift (Mata & Verheyen)

Testing for Policy Limit Drift

Given a listing of large losses, with their policy limits, we have a **sample** of the historical policy limits profile. This sample profile can be compared with the prospective (or in-force) profile used as input for the exposure-rating.


			Policy Limits			
Limits Sold:	500,000	750,000	1,000,000	2,000,000	5,000,000	Total for all PL
Premium	5,000,000	25,000,000	50,000,000	10,000,000	10,000,000	100,000,000
ELR	62.5%	62.5%	62.5%	62.5%	62.5%	62.5%
Expected Loss	3,125,000	15,625,000	31,250,000	6,250,000	6,250,000	62,500,000
Threshold:	250,000					
Count > Thresh:	3.1	14.0	26.0	4.5	3.6	51.2
Normalized	12.3	54.7	101.6	17.5	13.9	200.0
Std Dev	3.4	6.3	7.1	4.0	3.6	
Historical Counts	31.0	58.0	95.0	13.0	3.0	200.0

All numbers for illustration purposes only.

Testing for Policy Limit Drift

Does this represent a drift in policy limits?

All numbers for illustration purposes only.

The exposure rate is estimated using the risk profile and size-of-loss severity distribution for the prospective period.

$$ExposRate = \frac{\sum_{RiskProfile} Prem_i \cdot \frac{\left(LEV(L+R) - LEV(R)\right)}{LEV(PL_i)}}{\sum_{RiskProfile} Prem_i}$$

Alternatively, we can estimate the exposure rate for each historical period, by changing the risk profile (but always using the prospective size-of-loss distribution).

 $ExposRate_{2012}$

 $ExposRate_{2013}$

 $ExposRate_{2014}$

• • •

 $ExposRate_{2015}$

Mata & Verheyen suggest using these exposure rates to create an index applied to losses.

$$Index_{2012} = \frac{ExposRate_{2015}}{ExposRate_{2012}}$$

$$Index_{2013} = \frac{ExposRate_{2015}}{ExposRate_{2013}}$$

I recommend a small change to this and instead use the inverse of this index, to be applied to premium.

This removes the possibility of the index "blowing up" (divide-by-zero error) if one of the historical periods does not expose the treaty layer.

For a given client, we have a profile showing premium by policy limit (and by risk class) for each historical period.

Policy Limit	2007	2008	2009	2010	2011	2012	2013	2014	2015
500,000	7,460,000	6,220,000	5,180,000	4,320,000	3,600,000	3,000,000	2,500,000	2,250,000	2,000,000
1,000,000	70,000,000	70,000,000	70,000,000	70,000,000	70,000,000	70,000,000	72,500,000	75,000,000	75,000,000
2,000,000	2,500,000	2,500,000	2,500,000	2,500,000	2,500,000	2,500,000	2,500,000	2,000,000	1,000,000
5,000,000	890,000	1,190,000	1,580,000	2,110,000	2,810,000	3,750,000	5,000,000	6,000,000	6,000,000
10,000,000	1,790,000	2,380,000	3,170,000	4,220,000	5,630,000	7,500,000	10,000,000	10,000,000	12,500,000
25,000,000	2,000,000	2,000,000	5,000,000	5,000,000	5,000,000	10,000,000	10,000,000	10,000,000	10,000,000
500 xs 500	12.25%	12.37%	12.17%	12.19%	12.16%	11.67%	11.60%	11.65%	11.56%
4M xs 1M	1.49%	1.74%	2.51%	2.90%	3.39%	4.59%	5.17%	5.23%	5.53%
5M xs 5M	0.50%	0.60%	1.02%	1.17%	1.36%	2.00%	2.21%	2.15%	2.44%
15M xs 10M	0.39%	0.39%	0.93%	0.92%	0.91%	1.68%	1.59%	1.55%	1.53%

We bring in the exposure rates by historical period and use them as an index on the historical onleveled premium.

Year	Onlevel Premium	LDF	Prem / LDF	Exposure Rate	Index for Mix	Indexed Premium	Trended Layered Losses	Rate to Subject Premium		
	[A]	[B]	[C]=[A]/[B]	[D]	[E]*	[F]=[C]x[E]	[G]	[G] / [F]		
2007 2008 2009 2010 2011 2012 2013 2014	84,640,000 84,290,000 87,430,000 88,150,000 89,540,000 96,750,000 102,500,000 105,250,000	1.134 1.173 1.228 1.309 1.434 1.649 2.093 3.559	74,638,448 71,858,483 71,197,068 67,341,482 62,440,725 58,671,922 48,972,766 29,572,914	1.49% 1.74% 2.51% 2.90% 3.39% 4.59% 5.17% 5.23%	0.269 0.314 0.453 0.524 0.613 0.831 0.935 0.945	20,092,317 22,569,478 32,276,367 35,280,521 38,296,279 48,729,189 45,811,943 27,956,734	1,893,234 2,000,000 701,581 0 434,018 1,563,271 4,000,000	9.42% 8.86% 2.17% 0.00% 1.13% 3.21% 8.73% 0.00%		
Total	738,550,000		484,693,809			271,012,828	10,592,104	3.91%		
2015	106,500,000			5.53%	1.000	106,500,000	4,162,383	3.91%		
	* $[E]_t = [D]_{2015} / [D]_t$									

All numbers for illustration purposes only.

Alternatively, this can be considered as estimating an average experience/exposure relativity.

Year	Onlevel Premium	LDF	Prem / LDF	Exposure Rate	Layered Premium	Trended Layered Losses	Relative to Layered Premium
	[A]	[B]	[C]=[A]/[B]	[D]	[E]=[C]x[D]	[F]	[F] / [E]
2007	84,640,000	1.134	74,638,448	1.49%	1,111,442	1,893,234	1.703
2008	84,290,000	1.173	71,858,483	1.74%	1,248,470	2,000,000	1.602
2009	87,430,000	1.228	71,197,068	2.51%	1,785,424	701,581	0.393
2010	88,150,000	1.309	67,341,482	2.90%	1,951,604	0	0.000
2011	89,540,000	1.434	62,440,725	3.39%	2,118,426	434,018	0.205
2012	96,750,000	1.649	58,671,922	4.59%	2,695,541	1,563,271	0.580
2013	102,500,000	2.093	48,972,766	5.17%	2,534,168	4,000,000	1.578
2014	105,250,000	3.559	29,572,914	5.23%	1,546,476	0	0.000
Total	738,550,000		484,693,809		14,991,551	10,592,104	0.707
2015	106,500,000			5.53%	5,891,235	4,162,383	0.707

Same

All numbers for illustration purposes only.

Property – Experience Rating for Occurrence Layers

<u>The problem:</u> some events are considered "attritional catastrophes" for which historical experience is relevant. These include:

- Tornado
- Hail
- Winter storm

The historical loss event may need to be adjusted for demographic changes, and mix of business, as well as for loss inflation.

We can do this by running catastrophe models for these attritional events using historical exposure profiles. The AAL's on [inflation-trended] TIVs can be used in the same way that Policy Limit drift was included for casualty lines.

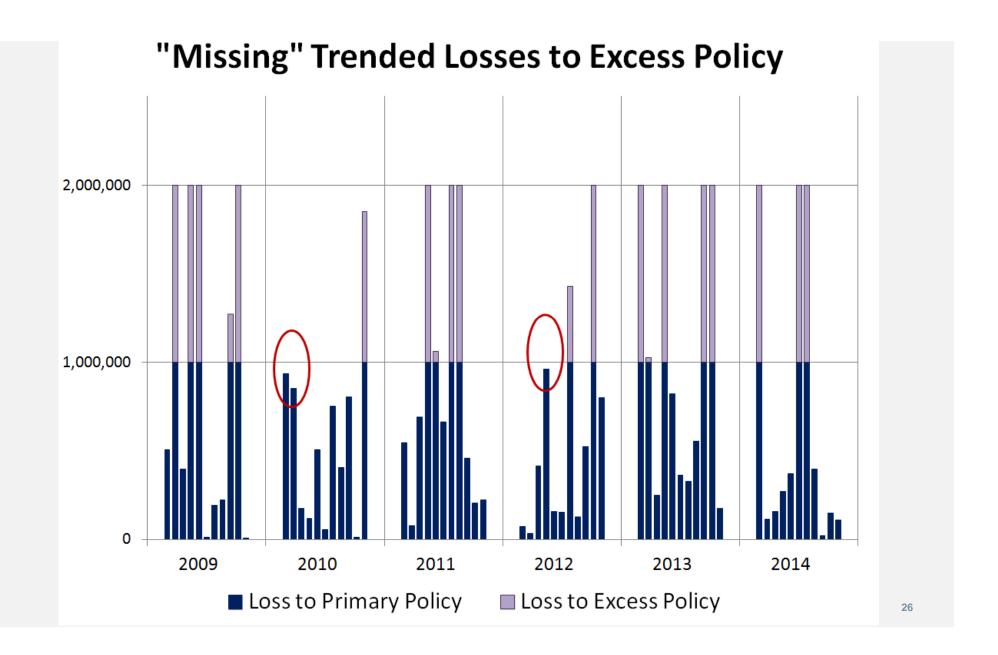
(see also Ira Robbin's 2009 paper on a similar calculation for rate change)

Property – Experience Rating for Occurrence Layers

The adjustment for the exposure growth uses Annual Aggregate Loss (AAL) from the catastrophe model – but follows same format as PL Drift calculation.

Year	Onlevel Premium	LDF	Prem / LDF	Cat Model Exposure AAL / TIV	Index for Exposure Changes	Indexed Premium	Inflated Layered Cat Losses	Rate to Subject Premium		
	[A]	[B]	[C]=[A]/[B]	[D]	[E]*	[F]=[C]x[E]	[G]	[G] / [F]		
2007 2008 2009 2010 2011 2012 2013 2014	60,000,000 65,000,000 70,000,000 75,000,000 80,000,000 85,000,000 90,000,000	1.000 1.000 1.001 1.003 1.017 1.076 1.371 3.770	60,000,000 65,000,000 69,930,070 74,775,673 78,662,734 78,996,283 65,645,514 25,198,939	0.07140 0.07620 0.08150 0.08700 0.09240 0.09780 0.10300 0.10780	0.636 0.679 0.726 0.775 0.823 0.871 0.917	38,147,818 44,105,076 50,750,674 57,929,506 64,723,389 68,796,406 60,209,154 24,189,186	0 15,260,000 1,510,000 5,200,000 14,560,000 24,710,000 3,250,000	0.00% 34.60% 2.98% 8.98% 22.50% 35.92% 5.40% 0.00%		
Total	620,000,000		518,209,212			408,851,210	64,490,000	15.77%		
2015	100,000,000			0.11230	1.000	100,000,000	15,773,464	15.77%		
	* $[E]_t = [D]_{2015} / [D]_t$									

All numbers for illustration purposes only.


<u>The problem:</u> when pricing proportional (aka Quota-Share) treaties covering excess or umbrella policies, there are some losses that are below the layer covered by the ceding company's policy.

These losses would have pierced into the ceding company's attachment point on an inflated basis. They are missing in the historical data.

This "leveraged trend" can be included in one of two ways:

- Trend the <u>aggregated</u> losses from the ceding company using a leveraged trend factor.
- Trend the <u>individual</u> losses from the ceding company, including the attachment point on known losses, and then include an additional load for the "missing" losses.

The expected value of the "missing" losses that would trend into the layer for each year can be estimated from the size-of-loss distribution.

$$\int\limits_{R}^{R\cdot(1+t)^{i}}(x-R)dF$$

$$= LEV(R \cdot (1+t)^i) - LEV(R)$$
$$-R \cdot [(1+t)^i - 1] \cdot \{1 - F(R \cdot (1+t)^i)\}$$

We can calculate exposure rates with and without this "missing" component to approximate the amount needed.

This formula produces a factor for each historical period that can be applied in exactly the same format as the other calculations given by Mata & Verheyen.

$$\frac{LEV_{L+R} - LEV_{R\cdot(1+t)^i} + R\cdot\left[(1+t)^i - 1\right]\cdot\left[1 - F\left(R\cdot(1+t)^i\right)\right]}{LEV_{L+R} - LEV_R}$$

The factor for "missing" trend will be different for each historical period.

It can be applied as an adjustment to premium, just as in the other examples

Year	Umbrella Limit		Umbrella Retention	Trend at 6.00%	Onlevel Premium	LDF	Prem / LDF	Adjustment	Adj Premium	% Missing
					[A]	[B]	[C]=[A]/[B]	[D]	[E]=[C]x[D]	
2005	4,000,000	XS	1,000,000	1.791	10,000,000	1.083	9,233,610	0.8643	7,980,602	-13.57%
2006	4,000,000	XS	1,000,000	1.689	10,000,000	1.105	9,049,774	0.8867	8,024,266	-11.33%
2007	4,000,000	XS	1,000,000	1.594	10,000,000	1.134	8,818,342	0.9077	8,004,145	-9.23%
2008	4,000,000	XS	1,000,000	1.504	10,000,000	1.173	8,525,149	0.9271	7,903,535	-7.29%
2009	4,000,000	XS	1,000,000	1.419	10,000,000	1.228	8,143,322	0.9447	7,693,231	-5.53%
2010	4,000,000	XS	1,000,000	1.338	10,000,000	1.309	7,639,419	0.9604	7,336,807	-3.96%
2011	4,000,000	XS	1,000,000	1.262	10,000,000	1.434	6,973,501	0.9738	6,791,001	-2.62%
2012	4,000,000	XS	1,000,000	1.191	10,000,000	1.649	6,064,281	0.9848	5,972,101	-1.52%
2013	4,000,000	XS	1,000,000	1.124	10,000,000	2.093	4,777,831	0.9930	4,744,492	-0.70%
2014	4,000,000	XS	1,000,000	1.060	10,000,000	3.559	2,809,778	0.9982	2,804,714	-0.18%
			G	rand Total:	100,000,000		72,035,008	0.9336	67,254,895	-6.64%

Conclusions

All of this is a lot of work... is the juice worth the squeeze?

- Materiality of change to the expected loss?
- Improvement in standard error of expected loss estimate?
- Improved understanding of client business? (information asymmetry)

Conclusions

Usefulness of thinking of experience rating as Predictive Model:

- Answer questions about the "best" weighting method
- Systematic way of determining if model assumptions are correct
- Systematic way of integrating additional information
- Systematic way of determining value of additional information

To fully benefit we need risk profiles for each historical period.

This should become a standard for reinsurance submissions.

References

Dean, Curtis Gary; "Generalized Linear Models" – chapter 5 in <u>Predictive Modeling</u> <u>Applications in Actuarial Science</u> (Frees, et al), Cambridge Press, 2014.

Mata, Ana & Mark Verheyen; "An Improved Method for Experience Rating Reinsurance Treaties using Exposure Rating Techniques" *CAS Forum* 2005.

http://www.casact.org/pubs/forum/05spforum/05spf171.pdf

Robbin, Ira; "Monitoring Renewal Rate Change on Cat-Exposed Excess Property Business" *CAS Forum* 2009.

http://www.casact.org/pubs/forum/09wforum/robbin.pdf

Thank you very much for your attention

David R. Clark

daveclark@munichreamerica.com

© Copyright 2015 Munich Reinsurance America, Inc. All rights reserved. "Munich RE" and the Munich Re logo are internationally protected registered trademarks. The material in this presentation is provided for your information only, and is not permitted to be further distributed without the express written permission of Munich Reinsurance America, Inc. This material is not intended to be legal, underwriting, financial, or any other type of professional advice. Any descriptions of coverage reflected in this presentation are meant to be general in nature and do not include and are not intended to include all of the actual terms, benefits and limitations found in an insurance policy. Only the insurance policy will form the contract between the insured and insurance company, and governs in all cases.

