

Agenda

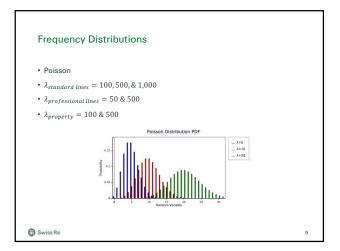
- 1. The Problem
- 2. The Approach
- 3. Results and Conclusions

Swiss Re

2

The Problem

- Very often in actuarial practice we need to estimate the distribution of the
- This is especially important for QS Reinsurance treaties with aggregate features (Loss Ratio Cap, Annual Aggregate Deductible, Loss Corridor, etc.)
- However, in practice, there is little data available to construct a separate frequency / severity model, and only the first two moments of the historical loss distributions might be available
- So: what shape of the Aggregate Loss Distribution should one assume to achieve the best results of the approximation?
- Does the answer to the prior question depend on the size of the book or line of business?


Swiss Re

3

The Approach - General Idea		
Create a (very) large sample of plausible annual aggregate losses Fit different probability distributions to the sample		
Test the goodness-of-fit and compare		
m Swiss Re	4	
The Approach - Details		
Choose frequency and severity distributions		
2. Simulate the number of claims (N) and individual claim amounts (X_i) , put the individual loss amounts into per-occurrence layers		
(X_1^l,\dots,X_N^l) , and calculate the corresponding aggregate loss $(S^l=\sum_{i=1}^NX_l^l)$ in each layer l		
Repeat many times (50,000) to obtain a sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i> This sample of aggregate loss in each layer <i>l</i>		
Estimate the parameters of different (candidate) probability distributions for each layer <i>l</i> Test the goodness of fit of the distributions and compare results		
(iii) Swiss Re	5	
The Approach		
Choose frequency and severity distributions		
 Simulate the number of claims (N) and individual claim amounts (X_i), put the individual loss amounts into per-occurrence layers (X₁¹,, X_N¹), and calculate the corresponding aggregate loss (S^I = 		
$\sum_{l=1}^{N} X_{l}^{l}$ in each layer l 3. Repeat many times (50,000) to obtain a sample of aggregate loss		
in each layer <i>l</i> Estimate the parameters of different candidate probability		
distributions for each layer $\it l$ 5. Test the goodness of fit of the distributions and compare results		
		-
0.00		

Severity Distributions — Casualty Source: ISO's Size of Loss Curves 1. Mixed Exponential Distributions: - Prem Ops – e.g. Table 1 Section Group CA - Products – e.g. Table C - Commercial Auto – e.g. Extra Heavy: Section Group 7 - Different means, different weights • Mixed distributions provide better fit to data than parametric distributions Source: Swiss Re Pricing System 2. Lognormal Distributions: - E&O – e.g., Medium Lawyers - D&O – e.g., Public – Non F500

Severity Distributions – Commercial Property (All Perils) Source: ISO's Size of Loss Curves 1. Mixed Exponential Distributions: - \$5M-\$6M AOI (Small) - \$25M-\$30M AOI (Middle) - \$100M-\$125M AOI (High) - Same means, different weights Source: Company Data 2. Loss Submissions.

The Approach 1. Choose frequency and severity distributions 2. Simulate the number of claims (N) and individual claim amounts (X_l) , put the individual loss amounts into per-occurrence layers $(X_1^l,...,X_N^l)$, and calculate the corresponding aggregate loss $(S^l = \sum_{l=1}^N X_l^l)$ in each layer l3. Repeat many times (50,000) to obtain a sample of aggregate loss in each layer l4. Estimate the parameters of different candidate probability distributions for each layer l5. Test the goodness of fit of the distributions and compare results

Swiss Re

Swiss Re

Simulation Methods

1. Latin Hypercube Sampling for Poisson frequency

2. Latin Hypercube Sampling, or

- For Mixed Exponential and Lognormal severity

Bootstrapping

- Used for simulation of severity from the property loss submissions

- Without replacement

Separating Individual Losses into Layers

• Amount of penetration of each simulated severity of loss within a layer =

Min (Max (LOSS - RETENTION, 0), LIMIT)

- For instance, for the layer \$750K xs of \$250K, RETENTION would be \$250,000 and LIMIT would be \$750,000

• The layers we used in Prem Ops, Products, and Auto are listed below:

1. \$250K Limit (Retention = \$0)
2. \$500K Limit
3. \$1M Limit
4. \$750K xs of \$500K
5. \$500K xs of \$500K
6. \$4M xs of \$1M

\$250K Retention

The Approach

- 1. Choose frequency and severity distributions
- 2. Simulate the number of claims (N) and individual claim amounts (X_i) , put the individual loss amounts into per-occurrence layers (X_1^l,\dots,X_N^l) , and calculate the corresponding aggregate loss $(S^l=\sum_{i=1}^N X_i^l)$ in each layer l
- 3. Repeat many times (50,000) to obtain a sample of aggregate loss in each layer l
- 4. Estimate the parameters of different candidate probability distributions for each layer *l*5. Test the goodness of fit of the distributions and compare results

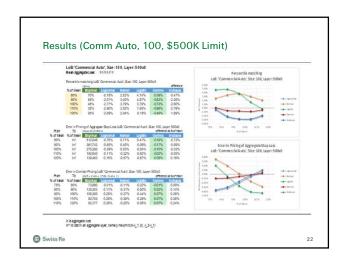
Swiss Re

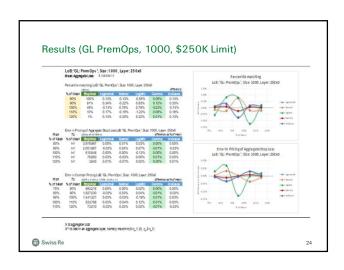
Candidate Aggregate Loss Distributions

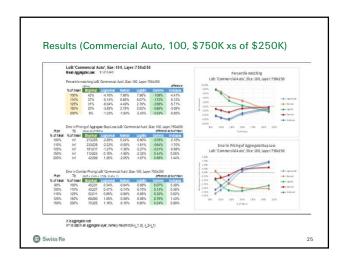
- Two-parameter distributions, as observed data is often too sparse to reliably estimate more than two parameters:
- Normal
- Logistic
- Gamma
- Inverse Gauss
- Lognormal

Swiss Re

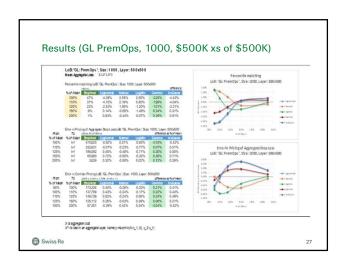
Candidate Aggregate Loss Distributions


Distribution	Parameters	Probability Density Function	Mean	Variance
Normal	μ - location $\sigma > 0$ - scale	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Logistic	μ - location $s > 0$ - scale	$\frac{e^{-(x-\mu)/s}}{s\left(1+e^{-(x-\mu)/s}\right)^2}$	μ	$\frac{s^2\pi^2}{3}$
Gamma	$\alpha > 0$ - shape $\beta > 0$ - rate	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
Inverse Gauss	$\mu > 0$ - location $\lambda > 0$ - shape	$\left[\frac{\lambda}{2\pi x^3}\right]^{1/2} \exp\left\{\frac{-\lambda(x-\mu)^2}{2\mu^2 x}\right\}$	μ	$\frac{\mu^3}{\lambda}$
Lognormal	μ - scale $\sigma > 0$ - shape	$\tfrac{1}{x} \cdot \tfrac{1}{\sigma \sqrt{2\pi}} \exp\bigl\{ - \tfrac{(\ln x - \mu)^2}{2\sigma^2} \bigr\}$	$e^{(\mu+\sigma^2/2)}$	$e^{\left(2\mu+\sigma^2\right)}(e^{\sigma^2}-1)$


Parameter Estimation • Method of Moments


The Approach 1. Choose frequency and severity distributions 2. Simulate the number of claims (N) and individual claim amounts (X_l), put the individual loss amounts into per-occurrence layers (X_1^1, \dots, X_N^k), and calculate the corresponding aggregate loss ($S^1 = \sum_{i=1}^N X_l^i$) in each layer l3. Repeat many times (50,000) to obtain a sample of aggregate loss in each layer l4. Estimate the parameters of different candidate probability distributions for each layer l5. Test the goodness of fit of the distributions and compare results

Demonstille Massakin u Tans	
Percentile Matching Test	-
 Compares the survival functions Prob(X > x) of the simulated aggregate loss distribution with fitted probability distributions Allows us to compare distributions in their tails 	
	-
Swiss Re 19	
	1
Excess Expected Loss Cost Test	
• Compares the conditional means of distributions in excess of different amounts, $E[X-x X>x]*Prob\{X>x\}$	
 Important for Aggregate Stop Loss Coverage and Aggregate Deductible Coverage (AAD) 	
Swiss Re 20	
	1
	-
Results	
Swiss Re 21	



Conclusions Gamma distribution provides a fit that is almost always the best for both ground up and excess layers (out of the five candidate distributions considered) Gamma distribution provides a uniformly reasonable approximation to the aggregate loss on the interval from the mean to at least two means of the aggregate distribution Thank you! Swiss Re Legal notice © 2018 Swiss Re. All rights reserved. You are not permitted to create any modifications or derivative works of this presentation or to use it for commercial or other public purposes without the prior written permission of Swiss Re. The information and opinions contained in the presentation are provided as at the date of the presentation and are subject to change without notice. Although the information uses taken from reliables oursees, Swiss Re does not accept any responsibility for the accuracy or comprehensiveness of the details given. All liability for the accuracy and completeness thereof or for any damage or loss resulting from the use of the information contained in this presentation is expressly excluded. Under no circumstances shall Swiss Re or its Group companies be falsel for any financial or corresponsable sites relating to this presentation.