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What is a Severe Thunderstorm?

In general, any destructive storm, but usually applied to severe local 

storms in particular, that is, intense thunderstorms, hailstorms, 

and tornadoes.

AMS Glossary:

Straight-line Wind (> 50 

knots)

Hail (>=1” in diameter) Tornado (EF0-EF5)

Primary Sub-perils
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What is a Severe Thunderstorm?

Supercells Multicells (Squall Lines, Derechos)

• Rotating, isolated

• Typical sub-perils

• Tornado

• Hail

• Wind/downbursts

• Typical dimensions

• Duration: hours

• Spatial: ~100-1,000s of km2

• Long-lasting

• Typical sub-perils

• Wind/downbursts

• Hail

• Tornado

• Typical dimensions

• Duration: days

• Spatial: ~10,000-100,000s of km2

© A. Cornelius
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• 7/10 Years ST tops US 

Annual Insured 

Losses

• 4/10 with 15+ Billion 

in Loss

Severe Thunderstorms Losses can Rival Those Risks of  

More “Traditional” Concerns…

Source: AON Benfield Catastrophe Insight
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… And these Losses have Been Steadily Increasing 

Over the Last 30 Years



6

Thunderstorms Also Exhibit High Degrees of Year-to-

Year Variability…

Average Annual Tornado Days

1990-2001

1.5 

days

13 

days
1.5 

days

13 

days

Average Annual Tornado Days

2000-2011
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Thunderstorms Also Exhibit High Degrees of Year-to-

Year Variability…

Average Annual Tornado Days

1990-2001

1.5 

days

13 

days
1.5 

days

13 

days

Average Annual Tornado Days

2000-2011

40-80% Increase in Tornado 

Activity!!
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… That is Potentially Affected by Changing/Cyclical 

Climate Conditions

ENSO’s Effect on Severe Thunderstorm Activity But it’s more than just 

ENSO!!

Pacific Decadal 

Oscillation (PDO)

North Atlantic Oscillation 

(NAO)

Pacific-North American 

Pattern (PNA)

Atlantic Multi-Decadal 

Oscillation (AMO)

Prasad Gunturi

EVP - Willis Re
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If I took EVERY tornado recorded for the last 70 years, 

and placed them on the US without overlap:

…And Covers Relatively Small Areas

1.3% of the 

Eastern 2/3 of 

CONUS

Limiting to the 

last 20-yrs and 

EF1+

.5% of Eastern 2/3 of 

CONUS
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• A Non-stationary, highly variable, potentially cyclical, 

spatially correlated, ill-observed phenomenon that can 

cause 10s of billions of dollars in Insured Losses per year

• In other words…

So What Do We Have Here???
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Don’t Worry!  The Models Can Help!

• Leverage multiple datasets 
to extend our 
“observational” dataset
• Helps reduce variability and 

uncertainty

• Leverage engineering and 
science to differentiate risks 
in a robust way

• Test sensitivities to various 
parameters (e.g. missing 
data)Catastrophe Models

Engineering

Science

Claims
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The Basic CAT Modeling Framework
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Information

Intensity

Calculation
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The Basic CAT Modeling Framework

Exposure

Information

Intensity

Calculation

Damage

Estimation

Policy

Conditions

Loss

Calculation

Limit

Deductible

Event

Generation

How Many?

Where?

When?

How Often?
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The Basic CAT Modeling Framework

Exposure

Information

Intensity

Calculation

Damage

Estimation

Policy

Conditions

Loss

Calculation

Limit

Deductible

Event

Generation

How Strong?

Spatially/Seasonally 

Correlated?
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The Basic CAT Modeling Framework

Exposure
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Affecting Which 

Buildings?
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The Basic CAT Modeling Framework

Exposure

Information

Intensity

Calculation

Damage
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Calculation
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Deductible

Event

Generation

Doing What 

Damage?

Mitigating 

Features?
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The Basic CAT Modeling Framework

Exposure

Information

Intensity

Calculation

Damage

Estimation

Policy

Conditions

Loss

Calculation

Limit

Deductible

Event

Generation

Deductibles?

Limits?

Treaty Structure?
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Severe Thunderstorm Risk

The Basic CAT Modeling Framework
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Event Generation: What Data Sources Do We Have 

to Quantify the Risk?

Other Datasets (e.g. Radar)Weather DataEye-witness Reports

Ground “Truth” But Biased by 

Population Changes

Temperature, Humidity, Wind Speed 

BUT TYPICALLY not specific to 

wind/hail/tornado

Depends on time and space coverage.  

Uncertainties vary by data type
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Scale of Storms Makes Them Difficult to Observe

Thunderstorm Weather station
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Scale of Storms Makes Them Difficult to Observe

Thunderstorm Weather station Observer
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Scale of Storms Makes Them Difficult to Observe

Thunderstorm Weather station ObserverRadar
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Scale of Storms Makes Them Difficult to Observe

Thunderstorm Weather station Observer ReanalysisRadar
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These Datasets Combine to Provide a Catalog of Plausible, Yet 

Perhaps Yet Unrealized Events

Frequency

Stochastic

Catalog

Location

Length

Width

Clustering

Wind Speed

Day 1 Day 2 Day 3

Year 1

Year 2

Year 3

Year 

100K

A 100K Year Stochastic Catalog
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Now that We Have a Catalog… How Do We 

Calculate Damage?

Source: Marshall et al., 2002 Source: RICOWI & AIR Damage Surveys Source: IBHS, 2013

Experiments Damage Surveys
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We Can Also Understand Uncertainty Directly Using 

Claims Data

Sample Damage Distributions from Hail and Wind Claims Data
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Supported Features in the Severe Thunderstorm Model 

• Seal of Approval • Roof Anchorage

• Floor of Interest • Year Roof Built

• Building Condition • Wall Type

• Tree Exposure • Wall Siding

• Small Debris Source • Glass Type

• Large Missile Source • Glass Percent

• Terrain Roughness • Window Protection

• Adjacent Building Height • Exterior Doors

• Roof Geometry • Building-Foundation Connection

• Roof Pitch • Internal Partition Walls

• Roof Covering • Wall Attached Structures

• Roof Deck • Appurtenant Structures

• Roof Covering Attachment • Roof Attached Structures

• Roof Deck Attachment

In Fact These Data Sources Allow Us to Consider 

Many Different Mitigation Factors?

Note: Secondary features highlighted in green are supported for the hail sub-peril.

Newly Added 
Features ONLY 

for Hail 

Hail Impact Resistance Roof Coverings: 

✓ Class A Least resistant

Most resistant

✓ Class B

✓ Class C

✓ Class D
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Damage Estimation: Translate Exposure, Building 

Characteristics, and Hazard into Damage

Roof 
Cover 
Type

Roof 
Slope

Wall 
Siding

…

Hail 
Vulnerability

Lab Tests

In-Situ Measurements

Engineering Principles

Building Characteristics Damage Functions
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0
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Loss Estimation: Apply Policy Terms and Uncertainty to Get 

Total Gross Insured Loss

Ground 

Up Loss

Policy 

Terms

Limits

Deductibles

Reinsurance

Uncertainty

Gross Loss

Hazard

Exposure

Vulnerability
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So How Can We Use This Tool to Manage the 

“Mess”?

The model alleviates many of the previous issues we 
encountered:

• “Highly variable”
More “years” of data allow for decreased variance and increased coverage

• “Ill-observed”
Application of meteorology and engineering allows for reasonable estimates in 
absence of claims data

• “Non-stationary, spatially correlated, and potentially cyclical”
Climate variability implicitly captured through use of historical atmospheric 
conditions

The model also allows us to answer key questions like…
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“What do I expect to happen?”

 AAL 50% 20% 10% 5% 2% 1% 0.4% 0.2%

Exceedance Probability Curve

Exceedance Probability

L
o

s
s

Event ID Year Month Day Loss

1 1 5 28 2,153,555

2 1 6 3 75,000,000

3 1 6 27 43,023,654

… …. … … …

… …. … … …

… …. … … …

… …. … … …

53229 10000 10 1 100,235,225

53230 10000 11 12 5,237,585

53231 10000 12 15 10,236,125

Event Loss Table
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“What could have happened?”
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“What if it happened again!?”

Gateway Arch

Eads BridgeBusch Stadium

MO Botanical 

Garden

Method Rate/yr Loss 2014

Inflation Only 3.3% $          543,653,610 

GNP 4.9% $       3,558,163,038 

Tangible Wealth 6.3% $     15,976,856,168 

Modeled N/A $        7,256,136,150 

1896 St. Louis Tornado

St. Louis c. 1875 St. Louis – Present Day



34

The Case for CAT Models…

Severe thunderstorms present a 
complex yet serious risk to the 
insurance market

CAT model’s help “tame the mess”

Flexibility and robustness help view 
the risk from different perspectives


