# Overlooking Tails:

41.

by Aleksey Popelyukhin, Ph.D.

T Swiss Re

### Assignment

I was asked to price

- ▼ 500x500 LPT
- ▼ of unknown LOB
- in unknown State
- from unknown Client

In provided package I found

- On-Level premiums
- Historic Limit Profiles
- ▼ 8\*8 Triangles (Inc, Ptd and Cnt)
- List of Large Losses x250

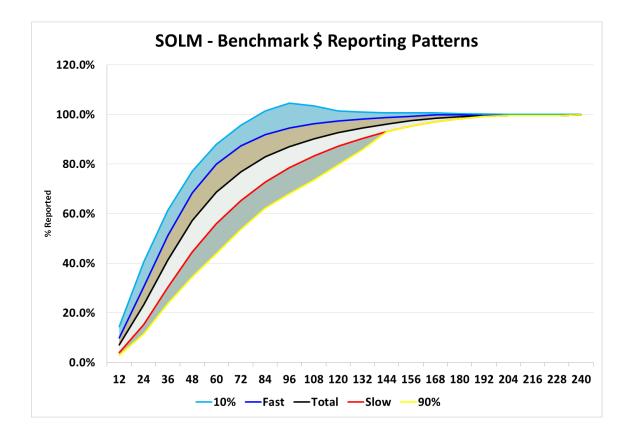
### Quick look

Quick reconnaissance showed that

LOB was the one with the long tail:

- Development still continued at age 96
- Claims were still crossing into at age 96
- 15 Large Claims were still open at last Eval

If I knew name of LOB I could look up default pattern.


Thankfully, I was provided with the chart of lag patterns possible for this LOB.

a "Penquin"

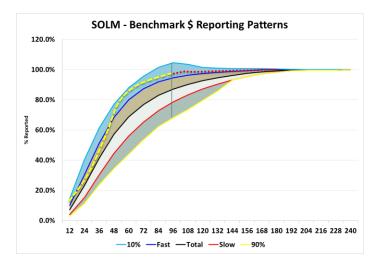
Swiss Re

| 84        | 96        |
|-----------|-----------|
| 4,014,400 | 4,963,600 |
| 4,794,700 |           |
|           |           |
|           |           |
| 84        | 96        |
| 16        | 19        |
| 21        |           |
|           |           |

| ID 💌 | AY 💌        | Inc 🔽     | Paid 🔽  |
|------|-------------|-----------|---------|
| 4    | 2009        | 250,159   | 159     |
| 5    | 2009        | 350,000   | -       |
| 6    | 2009        | 210,005   | 210,000 |
| 20   | 2010        | 400,000   | -       |
| 25   | <b>2011</b> | 275,000   | -       |
| 29   | 2012        | 250,000   | -       |
| 32   | 2013        | 325,000   | -       |
| 33   | 2013        | 500,000   | -       |
| 34   | 2013        | 300,000   | -       |
| 35   | 2013        | 250,005   | -       |
| 36   | 2013        | 425,000   | 325,000 |
| 37   | 2013        | 428,885   | 178,885 |
| 38   | 2014        | 424,817   | 24,817  |
| 39   | 2014        | 1,000,000 | -       |
| 40   | 2014        | 300,000   | -       |



Swiss Re

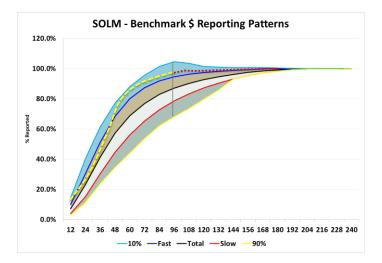

Now, with the Benchmark Reporting Patterns I was able to devise a plan of actions.

My plan was simple:

- Draw my partial pattern to age 96
- See where it ends on Benchmark chart
- That's my lag @ 96
- Continue from that point to the end

#### Problem:

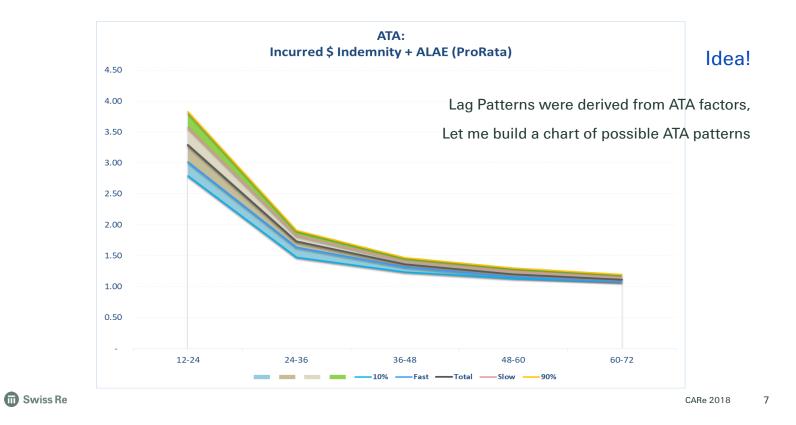
In order to build my pattern I need to know my lag @ 96 *ahead of time* 




#### Swiss Re

While I don't know my lag @96, I can calculate it by *extrapolating* my ATAs and multiplying them back

And then (with known lag@96):


- Draw my partial pattern to age 96
- See where it ends on Marlin
- Continue from that point to the end



#### Problem:

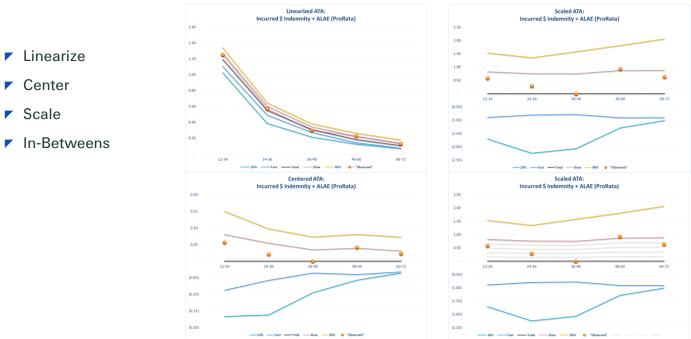

I don't know *what kind* of extrapolation to use and *how far* should extrapolation continue

#### Swiss Re



Same start - different benchmark:

- Calculate ATA from the triangle
- ▼ Plot "observed" ATA on benchmark chart
- **/** ...

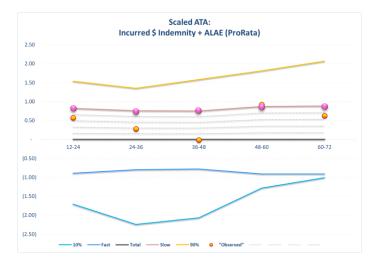



Client's ATA fall between 2 possible patterns, let's take a closer look

### Transform

Center

Scale




Swiss Re

9 CARe 2018

Same start - different benchmark:

- Calculate ATA from the triangle
- Plot "observed" ATA on Ichtyosaur chart
- Transform
- ► Find "In-between" line closest to observations



#### Consider yellow points as vector coordinates.


Take a projection (scalar product) on a direction defined by vector of points on red "Slow" line and scale it by the length (scalar product on itself) of the red line vector.

 $\beta = \sum Obs_t * Slow_t / \sum Slow_t * Slow_t$ 

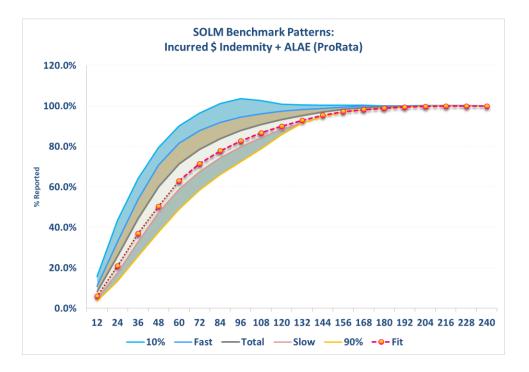


Swiss Re

### Closest "in-between" Gridline



Swiss Re


Same start - different benchmark:

- Calculate ATA from the triangle
- Plot "observed" ATA on Ichtyosaur chart
- Transform
- Find the "Gridline" closest to observations
- Take closest Gridline values for Ages beyond observations and "un-transform"

|   |                | 12-24 | 24-36 | 36-48  | 48-60 | 60-72 | 72-84 | 84-96 | 96-108 | 108-120 | 120-132 | 132-144 | 144-156 | 156-168 | 168-180 | <b>180-192</b> | 192-204 |
|---|----------------|-------|-------|--------|-------|-------|-------|-------|--------|---------|---------|---------|---------|---------|---------|----------------|---------|
| 5 | Gridline       | 0.58  | 0.28  | (0.02) | 0.92  | 0.63  | 0.75  | 0.65  | 0.51   | 0.46    | 0.54    | 0.63    | 0.69    | 0.62    | 0.36    | 0.76           | 1.33    |
| 4 | UnScaled ATA   | 0.06  | 0.02  | (0.00) | 0.04  | 0.02  | 0.02  | 0.01  | 0.01   | 0.01    | 0.01    | 0.01    | 0.01    | 0.00    | 0.00    | 0.00           | 0.00    |
| 3 | UnCentered ATA | 1.25  | 0.57  | 0.31   | 0.22  | 0.13  | 0.08  | 0.06  | 0.05   | 0.04    | 0.03    | 0.03    | 0.02    | 0.01    | 0.01    | 0.01           | 0.00    |
| 2 | ATA            | 3.48  | 1.77  | 1.36   | 1.25  | 1.14  | 1.09  | 1.06  | 1.05   | 1.04    | 1.03    | 1.03    | 1.02    | 1.01    | 1.01    | 1.01           | 1.00    |
| 1 | Pattern        | 6%    | 21%   | 37%    | 50%   | 63%   | 72%   | 78%   | 83%    | 87%     | 90%     | 93%     | 95%     | 97%     | 98%     | 99%            | 99%     |



Fit



Swiss Re

Same start - different benchmark:

- Calculate ATA from the triangle
- Plot "observed" ATA on Ichtyosaur chart
- Transform
- Find the "Gridline" closest to observations
- Take closest Gridline values for Ages beyond observations and "un-transform"
- ▼ With known tail we can do CL, BF and CC

| C-L Ult | C-L LR | Cred | C-C Ult | Selected |
|---------|--------|------|---------|----------|
| 589k    | 28%    | 80%  | 674k    | 606k     |
| 504k    | 25%    | 74%  | 620k    | 534k     |
| 957k    | 46%    | 66%  | 969k    | 961k     |
| 1,577k  | 72%    | 56%  | 1,334k  | 1,469k   |
| 1,521k  | 70%    | 45%  | 1,249k  | 1,370k   |
| 1,606k  | 70%    | 30%  | 1,235k  | 1,347k   |
| 0k      | 0%     | 14%  | 930k    | 800k     |
| 0k      | 0%     | 3%   | 1,062k  | 1,027k   |

Same start - different benchmark:

- Calculate ATA from the triangle
- Plot "observed" ATA on Ichtyosaur chart
- ▼ Transform
- Find the "Gridline" closest to observations
- Take closest Gridline values for Ages beyond observations and "un-transform"
- ▼ With known tail we can do CL, BF and CC
- With known Ultimates and Lags we can get future payments schedule

### The Answer!

| Yr          | 2017    | 2018    | 2019    | 2020    | 2021    | 2022    | 2023    | 2024    | 2025    | 2026    | 2027    | 2028    | 2029   | 2030   | 2031   | 2032   | 2033   | 2034   | 2035  | 2036  |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|-------|-------|
| 2009        | 32.57k  | 23.91k  | 18.96k  | 13.96k  | 14.73k  | 12.04k  | 8.47k   | 5.75k   | 0.92k   | 0.92k   | 2.30k   | 2.30k   | 1.38k  | 0.00k  | 0.00k  | 0.00k  | 0.00k  | 0.00k  | 0.00k | 0.00k |
| 2010        | 35.67k  | 29.95k  | 21.99k  | 17.43k  | 12.84k  | 13.54k  | 11.07k  | 7.79k   | 5.28k   | 0.85k   | 0.85k   | 2.12k   | 2.12k  | 1.27k  | 0.00k  | 0.00k  | 0.00k  | 0.00k  | 0.00k | 0.00k |
| 2011        | 122.30k | 104.59k | 87.82k  | 64.49k  | 51.11k  | 37.65k  | 39.71k  | 32.46k  | 22.84k  | 15.50k  | 2.48k   | 2.48k   | 6.20k  | 6.20k  | 3.72k  | 0.00k  | 0.00k  | 0.00k  | 0.00k | 0.00k |
| 2012        | 207.37k | 158.63k | 135.66k | 113.91k | 83.64k  | 66.30k  | 48.84k  | 51.51k  | 42.10k  | 29.63k  | 20.10k  | 3.22k   | 3.22k  | 8.05k  | 8.05k  | 4.83k  | 0.00k  | 0.00k  | 0.00k | 0.00k |
| 2013        | 213.48k | 190.91k | 146.04k | 124.89k | 104.87k | 77.01k  | 61.04k  | 44.96k  | 47.42k  | 38.76k  | 27.27k  | 18.50k  | 2.96k  | 2.96k  | 7.41k  | 7.41k  | 4.45k  | 0.00k  | 0.00k | 0.00k |
| 2014        | 196.70k | 219.13k | 195.96k | 149.91k | 128.20k | 107.64k | 79.04k  | 62.65k  | 46.15k  | 48.68k  | 39.79k  | 28.00k  | 18.99k | 3.04k  | 3.04k  | 7.60k  | 7.60k  | 4.56k  | 0.00k | 0.00k |
| 2015        | 66.87k  | 107.12k | 119.34k | 106.72k | 81.64k  | 69.82k  | 58.62k  | 43.05k  | 34.12k  | 25.13k  | 26.51k  | 21.67k  | 15.25k | 10.34k | 1.66k  | 1.66k  | 4.14k  | 4.14k  | 2.48k | 0.00k |
| 2016        | 30.81k  | 83.21k  | 133.31k | 148.52k | 132.81k | 101.60k | 86.88k  | 72.95k  | 53.57k  | 42.46k  | 31.28k  | 32.99k  | 26.97k | 18.97k | 12.87k | 2.06k  | 2.06k  | 5.15k  | 5.15k | 3.09k |
|             |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |       |
| Future Pmts | 905.76k | 917.46k | 859.08k | 739.82k | 609.84k | 485.59k | 393.68k | 321.12k | 252.42k | 201.92k | 150.58k | 111.28k | 77.09k | 50.84k | 36.75k | 23.56k | 18.25k | 13.86k | 7.64k | 3.09k |
| Discount    | 95%     | 91%     | 86%     | 82%     | 78%     | 75%     | 71%     | 68%     | 64%     | 61%     | 58%     | 56%     | 53%    | 51%    | 48%    | 46%    | 44%    | 42%    | 40%   | 38%   |
|             |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |       |

Disc Reserves 4.9m

### **Details:**

### **Data Quality**

The data I received were not quite "clean"

- Some strange ATA factors
  - 1,867,400 / 933,700 is exactly 2
- ▼ Total loss count smaller than LL count

6, 7 vs 7, 8

Total loss+ALAE smaller than LL loss

both Paid and Incurred

Some other unbelievable stuff

negative payments, impossible ALAE, etc..

 12
 24
 36

 AY 2009
 14,700
 933,700
 1,867,400

 12
 24
 36

 AY 2009
 1
 6
 7

#### Paid \$ Indemnity+Alae (Prorata) Triangle

| 12         | 24      | 36      | 48        | 60        | 72        | 84        | 96        |
|------------|---------|---------|-----------|-----------|-----------|-----------|-----------|
| -          | 21,900  | 601,200 | 1,177,200 | 1,707,500 | 2,249,800 | 2,642,800 | 3,679,400 |
| 135,200    | 348,300 | 657,600 | 1,779,000 | 3,079,600 | 3,850,100 | 4,244,300 |           |
| 39,500     | 105,800 | 706,400 | 1,797,900 | 2,293,700 | 2,395,200 |           |           |
| <br>39,200 | 108,500 | 99,100  | 764,800   | 1,469,000 |           |           |           |
| 116,600    | 314,200 | 773,000 | 1,652,000 |           |           |           |           |
| -          | 126,000 | 252,100 |           |           |           |           |           |
| 126,100    | 255,400 |         |           |           |           |           |           |

I had to adjust Incurred triangle in 3 cells

Swiss Re

### Details:

### Some Formulas

#### Let's trace what I was doing:

Transform

Switching to Log space to get additivity

Centering

Moving from the mix of two curves to one

Scaling

Adjusting for different standard deviations

Gridlines fit

Linear regression without intercept

$$Obs_t \rightarrow Ln(Obs_t)$$
,  $Total_t \rightarrow Ln(Total_t)$ ,  $Slow_t \rightarrow Ln(Slow_t)$ 

 $Ln(Obs_t) - Ln(Total_t) vs Ln(Slow_t) - Ln(Total_t)$ 

$$\frac{Ln(\textit{Obs}_t) - Ln(\textit{Total}_t)}{\widehat{\sigma_t}} \ \text{VS} \ \frac{Ln(\textit{Slow}_t) - Ln(\textit{Total}_t)}{\widehat{\sigma_t}}$$

$$\sum_{t} \left( \frac{Ln(Obs_{t}) - Ln(Total_{t}) - \beta * (Ln(Slow_{t}) - Ln(Total_{t}))}{\widehat{\sigma_{t}}} \right)^{2} \to Min$$

So I was just looking for the best curves mix

$$Ln(Obs_t) \sim (1 - \beta) \cdot Ln(Total_t) + \beta \cdot Ln(Slow_t) + \varepsilon_t$$
  
CARE 2018 18

### A few fine Points

#### $\hat{\sigma}_t$ - what is that?

## An estimate of dispersion of the distribution of possible (benchmark) logarithms of ATAs @ age *t*

#### Assumption

Benchmark's Ln(ATA) are normally distributed

#### "Observations"

Known values are Expected Shortfalls @  $\alpha$  - percentile

#### **F** Function of $\sigma$

Expected shorfalls can be expressed via  $\sigma$ 

#### **F** Estimating $\sigma$

Taking average of all 4 estimates

#### $Ln(ATA_t) \sim \mathcal{N}(Ln(Total_t), \sigma_t^2)$

 $ES_{\alpha}$  - mean of  $Ln(ATA_t)$  for all companies in  $\alpha$  – percentile

$$ES_{\alpha} - Ln(Total_{t}) = ESc_{\alpha,t} = \sigma_{t} \cdot \mathcal{N}(\Phi^{-1}(\alpha)) / (1 - \alpha)$$
 "c" means Centered

$$\widehat{\sigma_t} = 1/4 \cdot \left(\frac{ESc_{10\%,t}}{1.75} + \frac{ESc_{50\%,t}}{0.8} + \frac{ESc_{50\%,t}}{0.8} + \frac{ESc_{10\%,t}}{1.75}\right)$$

#### Swiss Re

### A few fine Points

#### Interpretations of

$$\sum_{t} \frac{\left(Ln(Obs_{t}) - (1 - \beta) \cdot Ln(Total_{t}) - \beta \cdot \left(Ln(Slow_{t})\right)^{2}}{\widehat{\sigma_{t}}^{2}} \to Min$$

#### Weighted Least Squares Estimation

A useful application of that notion

#### Heteroskedasticity Fix

Different dispersions require attention

#### Credibility Weighted Fit

Inverse  $\sigma^2$  - less trust to wide-spread values

#### Intuitively Appealing Goal Function

To choose one answer out of many you need to minimize something

#### G Swiss Re

### A few fine Points

Log-space provides consistency for my linear fit

 $Ln(Obs_t) \sim (1 - \beta) \cdot Ln(Total_t) + \beta \cdot Ln(Slow_t)$ 

- **r** The same  $\beta$  that fits  $Ln(ATA_t)$  fits  $Ln(ATU_t)$  and  $Ln(Lag_t)$ 
  - Model is linear, so sum of fits equals fit of sums
  - In normal space product of fits equals fit of products
  - The model is internally consistent

### **Details**:

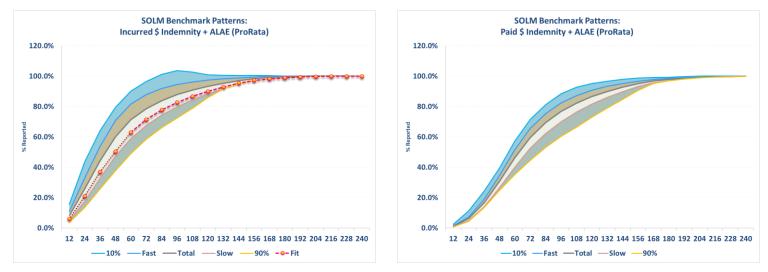
### Paid pattern

When I said that I can build schedule of future payments with Ultimates and Lags

I meant *Paid* Lags, but I din't tell you where I got them.

The fit I described may not work on Paids

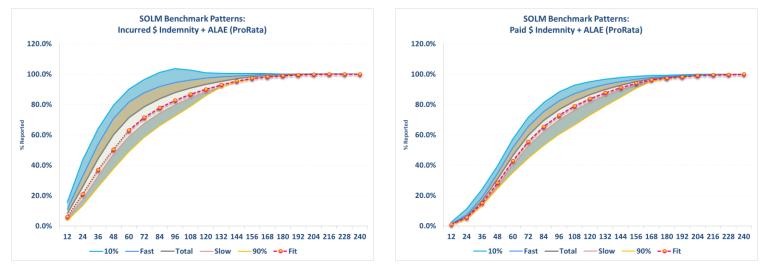
The triangle can be half empty as it was in my case


#### ► The LOB is unknown

No default patterns

▼ The reserving style of the client is unclear

Triangle is too small and counts are in single digits


### Benchmarks come in pairs (Paid and Incurred).



The "Total" and "Slow" patterns are produced by *matching subsets* of the companies

#### Swiss Re

### Benchmarks come in pairs (Paid and Incurred).



I assumed I could make the *same fit* for Paid as I did for Incurred

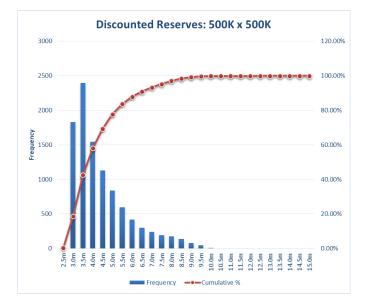
#### Swiss Re

### **Details**:

### Aggregate Distribution

I called my *selected* ATAs "Observed"

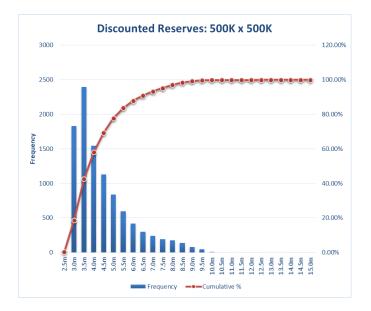
While in actuality they are just some estimates of the underlying "true" ATA values


What happens to my fit if I plug other ATAs

Let's say ExHiLo Avg instead WtdLast5Years Avg

- Also, my  $\beta$  is just the (best) estimate of "true"  $\beta$ 
  - **v** What happens to my answer with other  $\beta$

It would be smarter to use robust regression


I ran 10000 simulations to answer these questions.



Swiss Re

Same start - different benchmark:

- Calculate ATA from the triangle
- Plot "observed" ATA on Ichtyosaur chart
- Transform
- Find the "Gridline" closest to observations
- Take closest Gridline values for Ages beyond observations and "un-transform"
- With known tail we can do CL, BF and CC
- With known Ultimates and Lags we can get future payments schedule
- And estimate a second moment



### Thank You!

7









©2018 Swiss Re. All rights reserved. You are not permitted to create any modifications or derivative works of this presentation or to use it for commercial or other public purposes without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and are subject to change without notice. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for the accuracy or comprehensiveness of the details given. All liability for the accuracy and completeness thereof or for any damage or loss resulting from the use of the information contained in this presentation is expressly excluded. Under no circumstances shall Swiss Re or its Group companies be liable for any financial or consequential loss relating to this presentation.

