

watsonwyatt.com

PM-2: Conversion and Retention Modeling

CAS RPM Seminar

James Tanser March 10, 2009

Agenda

- Model forms
- GLM choices
- Modelling price change

Elasticity models

- UK Actuarial profession's 2008 GIRO working party on "Demand models"
- James Tanser (Chair), John Light, Sophia Mealy, Owen Morris
- What sort of models are used and should be used?

Agenda

Model forms

- GLM choices
- Modelling price change

Model form: Linear versus non-linear

- Varying views:
 - Simplistic
 - Complex linear
 - Non-linear
- Consider relative competitiveness for retention as an example
 - Our price / market price

Simplistic

Treat as variate, assume linear

 $\mu = g^{-1}(\Sigma X_j \beta_j + c(p/m))$

Assumes "same" price sensitivity everywhere

 Logit link => Central probabilities more sensitive, extremes less sensitive

No-one does this, but helpful to understand issues

Complex linear

Use a continuous function of competitiveness

$$\mu = g^{-1}(\Sigma X_j \beta_j + c_k f_k(p/m))$$

- Function is polynomial or spline
- Can interact with other variables to achieve range of shapes
- Simple to apply with existing tools

Non-linear

Linear in competitiveness, gradient varies by segment

$$\mu = g^{-1}(\Sigma X_{j}\beta_{j} + (p/m).exp(\Sigma Z_{j}\gamma_{j}))$$

- Similar issues to simplistic, but locally OK
- Hard to fit due to co-linearity of parameters

What is best approach?

- Working party did not look at non-linear models
- Splines and interactions with splines give wide range of shapes
- Significant evidence that price sensitivity is not "constant"
 - Asymmetric utility curve
- GLM complex linear practical and effective

Agenda

- Model forms
- GLM choices
- Modelling price change

- Small response: 32 started and 11 finished
- Results interesting despite low response

Methods in use

Source of models

GLM choices

Could try:

- -log link
- probit link
- complementary log-log link

Link functions Rescaled so $0 \Rightarrow 0.5$

Copyright © Watson Wyatt Worldwide. All rights reserved

Link functions Rescaled to be the same at 0 and -2

Link functions Rescaled to be the same at 0 and -2

Link functions Rescaled to be the same at p=0.1

Data analysis

- Two datasets examined:
 - "High" typical of traditional channels
 - "Low" typical of new channels
- Data split into Train and Test using time split
- Base model was Logistic
 - Briefly iterated to get reasonable model
 - Same variable selection applied everywhere

Lift curves: Conclusions

All models appeared to do equally well in separating high and low conversion segments

Actual versus Expected: Definition

- Take out of sample data and add fitted values
- Sort data according to expected value
- Create 100 pots of equal exposure
- Calculate Expected / Actual in each pot and plot on graph
- Key points:
 - A flat line is equally good (or bad) everywhere
 - Systematic over or under estimation revealed by departure from y=1 line (not shown)

Actual Vs Expected - High Conversion Data Set

Actual Vs Expected - Low Conversion Data Set

Actual versus Expected: Conclusions

- Within any given model, there appears to be a systematic overestimation of low conversion segments
- Poisson/Log link is worst option
 - Poor at both ends for high conversion!
- Binomial/Probit appears flatter
 - Not clear what is happening for low conversion
- Binomial/Logit next best shape (but marginally better predictor)
 - Methodology may bias analysis to prefer this method

Agenda

- Model forms
- GLM choices
- Modelling price change

Explanatory variables

- Treat as standard analysis
- Price change best treated continuously
- Care is needed not to over fit

Spline definition

Regression splines important when modelling elasticity in optimisation context

Example retention elasticity curve

Example retention elasticity curve

Retention analysis

Run 4 Model 2 - Interactions - Retention model

Negative elasticity

- Interaction curves may not be monotonic
- Negative elasticity can be local or global
- May be:
 - Noise: Reduce number of knots or smooth
 - Genuine effect: Look for consistency and understand segment
- Don't throw the baby out with the bath water

Missing values

- Missing values in a variate cause entire record to be ignored
 - Replace missing values with zeros
- Care is needed to differentiate "real" zeros and "missing" zeros
 - Create a missing flag and include in all models involving variate
 - Remember spline basis functions transform zero to some other (non-zero) value (extrapolation)

Edge effects

- One or two records with extreme variate values can have a disproportionate effect on the model
 - Look at leverage or Cook's distance
 - Understand your data
 - Consider limiting range of variate
 - Be careful when extrapolating

Cautionary example

- Artificial data, loosely based on actual naive analysis
- Retention analysis containing three records with incorrect premium change, all of which renewed
- Problems:
 - Overfitting to edges
 - Knot placement

Simple grouped oneway

Retention job Example of problem factor

Trials — Probability

Simple grouped oneway

Retention job Example of problem factor

Trials — Probability

Detailed oneway

Retention analysis

Example of problem factor

Trials — Probability

Detailed oneway

Retention analysis

Example of problem factor

č

Trials ---- Probability

X-Y plot

Probability

X-Y plot

Probability

Model results

---- Probability ----- Fitted

Model results

Probability — Model

Solutions

- Cap and collar price changes in data
- Understand your data and results
 - Thought needed
- Take care in extrapolation

Questions?

- James Tanser
 - -+44 1737 274249
 - james.tanser@watsonwyatt.com
 - www.watsonwyatt.com/pretium

watsonwyatt.com

PM-2: Conversion and Retention Modeling

CAS RPM Seminar

James Tanser March 10, 2009

