
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

There are several theoretical stumbling blocks to
overcome to develop rating relativities

- Separating the Signal from the Noise
- Not double counting Correlated Exposures
- Addressing Variable Interactions

\qquad
\qquad
\qquad
\qquad

Filtering the Signal from the Noise requires credibility \qquad estimates based on measuring Process Variance
For example:
A coin is tossed 10 times and
only lands on heads 4 times
(40%).
only lands on heads 4 times
(40\%).

Is the coin biased?
is truly more risky than 101?
To answer these questions we need a measure of the variability in each processes
3. The 'signal' is usually made up of inter-related effects

Interactions
This occurs when two variable's indicated factors are correlated hence the outcome of one depends on the level of the other

Possible Example: Youngsters with muscle cars are more likely to drive them often and fast while senior citizens with muscle cars are more likely to leave them in the garage and polish them: Horsepower and Driver Age interact

Summary on Theoretical issues
Processes Variability measures allow us to gauge the strength of the
'signal' or indicated factor estimates.
Correlations between two variables' exposure distributions cause the
indications to be linked. This is NOT an interaction; it is an important effect
and multivariate techniques can resolve this problem.
Interactions are correlations between two variables' indicated factors:
the indicated factors behave differently across levels of a
secondary variable.
It is perfectly possible for two variables to be correlated but have no
interaction, or for two variables to have an interaction but not be
correlated.

\qquad

One-way Analysis Techniques and their Shortfalls Pure Premium Example	
Youthful Losses: Exposures: $\$ 266,667$ Pure Preot Peremium: Reativit: $\$ 133$ 2.00	Mature Losses: $\$ 133,333$ Exposures: 2,000 Pure Premium: $\$ 67$ Relativity: 1.00

blind to the rest of the class plan

No Points	
Losses:	$\$ 150,000$
Exposures:	2,000
Pure Premium:	$\$ 75$
Relativity:	1.00
Driver With Points	
Losses:	$\$ 250,000$
Exposures:	2,000
Pure Premium:	$\$ 125$
Relativity:	1.67

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Should a Young Driver with Points be charged 3.33 times the rate of a clean Adult (2.00 * 1.67) ?
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Should a Young Driver with Points be charged 3.33 times the rate of a clean Adult (2.00 * 1.67) ? \qquad

Yes - If Pointed drivers are evenly spread through Youth and Matures. Then no correlation exists between Pointed vs. Youthful exposures

No - If Young drivers are more (or less) likely to have Points. Then a correlation will exist between the exposures, and oneway analysis will be distorted by the bias.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

There are several problems with one- \qquad way analysis

- Usually does not provide a measure of significance
\qquad
\qquad
- Can overlook Exposure Correlations
- Not sensitive to Factor Interactions \qquad

One-way Loss Ratios are inherently Multivariate: the premium takes into account the rest of the class plan
For example, if you look at the relative loss ratios between Youthful and Adult drivers, the premium within that loss ratio will reflect the current factors for Points.
Because Youthfuls have a higher percentage of Points, their average premium will be higher due to the higher Points factors. This will lower the loss ratio. In this way we don't "double count" the effect of Points and Age.
Side note....what if Points didn't exist? Appropriate Age factors would change.

\qquad the premium takes into account the rest of the
\qquad
\qquad
Adult drivers, the premium within that loss ratio will reflect the current factors for Points.
ause Youthfuls have a higher percentage of Points, their average ower the loss ratio. In this way we don't "double count" the effect of Points and Age

Side note... what if Points didn't exist? Appropriate Age factors would change.

One-way Loss Ratio analysis has a significant shortcoming

It assumes the rating plan's other factors are accurate.
\qquad
$=\frac{\sum \text { Loss }}{\sum \text { (Base Rate) } \cdot \operatorname{Rel}_{\text {Age }} \cdot \operatorname{Rel}_{\text {Points }} \cdot \operatorname{Rel}_{\text {Terr }} \cdots}$ \qquad

This assumption is often not appropriate, as is the case when there are
\qquad multiple changes which need to be made.
e.g. suppose you want to examine the adequacy of both your Age and Points curves. When you look at loss ratios by Age, you are assuming your current Points factors are good and vice versa for when you look at loss ratios by Points. \qquad

Minimum Bias Techniques overcome several common short comings

Min Bias is an iterative approach for reducing the error between observed and indicated relativities

- Optimizes the relativities for multiple changes
- Can use either Pure Premiums or Loss Ratios

Calculates relativities which minimize the error with observed relativities based on a selected error (Bias) function

- The Bias Function determines how the error which can't be removed is then distributed
- Iterative technique - when the equations converge you have the optimal solution

\qquad
the optimal relativities for Age and Points

Indicated Pure Premium			Error (Indication vs. Actual)		
	Youthful	Adult		Youthful	Adult
Points	350	150	Points	. 50	. 50
No Points	233	100	No Points	-67	0

Imperfect Match - use Minimum Bias Approach
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Which Bias Function to Chose?
$\frac{\text { Balance Principle }}{\text { Ensures that the total error in each class is zero }}$
Least Squares Minimizes the total error, using the Sum of Squared errors (nominal values)
Chi Squared Minimizes the total error, using the Sum of Squared errors (as a Percent of expected)

\qquad
Observed Pure Premiums

$700=(100 \times \mathrm{A} 1 \times \mathrm{P} 1)+(100 \times \mathrm{A} 1 \times \mathrm{P} 2)$
300
$=(100 \times \mathrm{A} 2 \times \mathrm{Pl})+(100 \times \mathrm{A} 2 \times \mathrm{P} 2)$
$700=(100 \times \mathrm{Al} \times 1.50)+(100 \times \mathrm{A} 1 \times 1.00)$
$300=(100 \times \mathrm{A} 2 \times 150)+(100 \times \mathrm{A} 2 \times 1.00)$
1st Iter. 2nd Iter.
Convergence

1 1st Iteration Solution for Age Variables					
	Symbol	Solved Value	Rebased		
Youth	$\mathrm{Al}^{\text {a }}$	2.8000	${ }^{2} .3333$		
Adult	A2	1.2000	1.0000	Avalues for 'Agq'.0000	1.0000

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 2 Notes:	
\quad	Immediate convergence not always the case
\quad	Method can be extended to many dimensions
\quad	Possible to code the calculation directly into a
	spreadsheet ('short cut' formulas exist)
\quad	Can use with multiplicative or additive pricing models
\quad	Could use Least Squares, Chi Squared, or Maximum
	likelihood approaches instead
\quad	For more information see CAS publication:
The Minimum Bias Procedure, A Practioner's Guide, by Feldblum and Brosius	

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

With Insurance applications we use the rating factors as the Dimensions in the regression

- Observed Pure Premiums or Loss Ratios are used to \qquad determine the parameter values, or 'fit' the model
- Usually Categorical variables are used instead of Quantitative variables
- Specifying a Categorical model differs from a Quantitative model:
- Categorical: each Level of a Variable has it's own parameter
- Quantitative: each Variable has a 'slope' for all levels within it

We specify a Categorical model so each 'cell' is uniquely represented using 'dummy variables' \qquad

Loss	Clean	Pointed
Younger	1,500	4,500
Older	5,000	7,500

This two-dimensional example is
formulated as...
$\mathrm{y}=\beta_{\text {Youth }} \mathrm{x}_{1}+\beta_{\text {Adult }} \mathrm{X}_{2}+\beta_{\text {Clean }} \mathrm{x}_{3}+\varepsilon$
The x's take on values of O or 1
The default is a 'Pointed'driver
\qquad
\qquad The default is a 'Pointed' driver
\qquad

$$
4,500=\beta_{\text {Youth }} \cdot 1+\beta_{\text {Adult }} \cdot 0+\beta_{\text {Claan' }} 0+\varepsilon
$$

$$
1,500=\beta_{\text {Youth }} \cdot 1+\beta_{\text {Adutt }} \cdot 0+\beta_{\text {Clean }} \cdot 1+\varepsilon
$$

$$
7,500=\beta_{\text {Youth }} \cdot 0+\beta_{\text {Adult }} \cdot 1+\beta_{\text {Clean }} \cdot 0+\varepsilon
$$

$$
5,000=\beta_{\text {Youth }} \cdot 0+\beta_{\text {Adult }} \cdot 1+\beta_{\text {Clean }} \cdot 1+\varepsilon
$$

Solve the Parameters (β) by substituting in the observed

 Pure Premiums $\qquad$$4,500=\beta_{1} \cdot 1+\beta_{2} \cdot 0+\beta_{3} \cdot 0+\varepsilon$
$1,500=\beta_{1} \cdot 1+\beta_{2} \cdot 0+\beta_{3} \cdot 1+\varepsilon$
$7,500=\beta_{1} \cdot 0+\beta_{2} \cdot 1+\beta_{3} \cdot 0+\varepsilon$
$5,000=\beta_{1} \cdot 0+\beta_{2} \cdot 1+\beta_{3} \cdot 1+\varepsilon$

Loss	Clean	Pointed
Younger	1,500	4,500
Older	5,000	7,500

\qquad

Usually the system of equations will not have a fit that perfectly explains all variation. What fit will be best at minimizing the error ? \qquad
To find an answer, we need a criterion for what is the "best" answer. A typical approach is to minimize the sum of the squared errors (SSE). \qquad
SSE $=\varepsilon_{1}{ }^{2}+\varepsilon_{2}{ }^{2}+\varepsilon_{3}{ }^{2}+\varepsilon_{4}{ }^{2}+\ldots \quad$ where $\varepsilon=$ (observed - expected $)$ Minimize by taking the derivative with respect to beta: $\delta S S E / \delta \beta_{i}$
Set the derivative equal to zero and solve for $\beta_{i}: \delta S S E / \delta \beta_{i}=0$ \qquad
\qquad

Solve the Parameters (β) by substituting in the observed Pure Premiums and Minimizing the SSE \qquad
$4,500=\beta_{1} \cdot 1+\beta_{2} \cdot 0+\beta_{3} \cdot 0+\varepsilon$
$1,500=\beta_{1} \cdot 1+\beta_{2} \cdot 0+\beta_{3} \cdot 1+\varepsilon$
$7,500=\beta_{1} \cdot 0+\beta_{2} \cdot 1+\beta_{3} \cdot 0+\varepsilon$
$5,000=\beta_{1} \cdot 0+\beta_{2} \cdot 1+\beta_{3} \cdot 1+\varepsilon$

Loss	Clean	Pointed
Younger	1,500	4,500
Older	5,000	7,500

$\operatorname{SSE}=\sum(\varepsilon)^{2}=\sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2}$
$=\left(4,500-\beta_{1}\right)^{2}+\left(1,500-\beta_{1}-\beta_{3}\right)^{2}+\left(7,500-\beta_{2}\right)^{2}+\left(5,000-\beta_{2}-\beta_{3}\right)^{2}$
$\delta S S E / \delta \beta_{1}=2 \cdot\left(4,500-\beta_{1}\right) \cdot(-1)+2 \cdot\left(1,500-\beta_{1}-\beta_{3}\right) \cdot(-1)+0+0 \stackrel{\text { st }}{=} 0$
$\delta S S E / \delta \beta_{2}=0+0+2 \cdot\left(7,500-\beta_{2}\right) \cdot(-1)+2 \cdot\left(5,000-\beta_{2}-\beta_{3}\right) \cdot(-1) \stackrel{s t}{=} 0$
$\delta S S E / \delta \beta_{3}=0+2 \cdot\left(1,500-\beta_{1}-\beta_{3}\right) \cdot(-1)+0+2 \cdot\left(5,000-\beta_{2}-\beta_{3}\right) \cdot(-1) \stackrel{s e r}{=} 0$

\qquad

Finding the optimal answer for a multi-linear regression boils down to systems of equations \qquad
$4,500=\beta_{1} \cdot 1+\beta_{2} \cdot 0+\beta_{3} \cdot 0+\varepsilon$
$1,500=\beta_{1} \cdot 1+\beta_{2} \cdot 0+\beta_{3} \cdot 1+\varepsilon$
$7,500=\beta_{1} \cdot 0+\beta_{2} \cdot 1+\beta_{2} \cdot 0+\varepsilon$
$5,000=\beta_{1} \cdot 0+\beta_{2} \cdot 1+\beta_{3} \cdot 1+\varepsilon$ \qquad

- Expressing a System of Equations is more conveniently done via Matrix Notation and Linear Algebra

Especially as the number of variables and observations get more numerous \qquad
\qquad
\longrightarrow

Matrix notation allows systems of equations to be more elegantly represented

$\left.\begin{array}{l}\text { We think of the Linear Model as having Three } \\ \text { Parts: } \\ \text { Random Component: The Observations being predicted } \\ \text { Systematic Component: The Predictor variables, also notated as } \eta \text { ('eta') } \\ \text { Link function: Defines the relationship between the predictors } \\ \text { and the observations }\end{array}\right]$
\qquad

Linear Modeling is subject to some assumptions that may not fit Insurance applications well \qquad
$\underline{Y}=\mathbf{X} \cdot \underline{\beta}+\underline{\varepsilon}$
Random Component: Observations are independent and come
\qquad
variance.
Systematic Component: Predictor variables are related as a Linear sum, η \qquad
i.e. Predictors are related as a linear combination:
$\eta=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3} .$. \qquad
Link function: The expected value of Y is equal to η
$E[Y]=\eta$

\qquad
\qquad

Linear Modeling is subject to some assumptions that may not fit Insurance applications well \qquad

$$
E[Y]=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3} \ldots
$$

\qquad
Systematic Component: The Predictor variables are a Linear sum, η \qquad
Link function: The expected value of Y is equal to η

This pair assumes that Y is predicted by the additive combination of the X variables. \qquad
However, most insurance effects tend to combine multiplicatively.
$\mathrm{E}[\mathrm{Y}]=\left(\beta_{1} \mathrm{x}_{1}\right) *\left(\beta_{2} \mathrm{x}_{2}\right) *\left(\beta_{3} \mathrm{x}_{3}\right) *$.

Round up of Multi-variate approaches and their limitations \qquad

One-way Pure Premium:

- No measure of Significance (Point estimate only)
- Can overlook Exposure Correlations - Not sensitive to Factor Interactions
- Is Sensitive to correlations

But assumes all other pricing factors accurate can't use if changing multiple structures
Provides Point estimates only

- Does accommodate multiple structure changes
- But only Provides Point estimates
- Does accommodate multiple structure changes

Provides Confidence Ranges \& Significance test
But requires assumptions that don't fit insurance data
Generalized Linear Models use more lenient assumptions

$$
\underline{Y}=g^{-1}(\mathbf{X} \cdot \underline{\beta})+\underline{\varepsilon}
$$

Random Component: Observations are independent, but come
from one of the family of Exponential
Distributions (Normal, Poisson, Gamma,...) now the variance can change with the mean and negative values can be prohibited
Systematic Component: Predictor variables are related as Linear sum, η No Change here: $\eta=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$..
Link function: The expected value of Y is equal to a transformation of $\eta: g(E[Y])=\eta \quad$ or $\quad E[Y]=g^{-1}(\eta)$ A \log link results in a multiplicative relationship between the X 's
 $E[Y]=e^{(n 1)}=e^{\left(x \beta_{1} \beta_{1}+x_{2} \beta_{2}\right)}=e^{\left(x_{1} \beta_{1}\right)} e^{\left(x 2 \beta_{2}\right)}$

Generalized Linear Modeling assumptions are better suited for Insurance applications
$\underline{Y}=\mathrm{g}^{-1}(\mathbf{X} . \underline{\beta})+\underline{\varepsilon}$
First Step is choosing a Link function.
You must select a Distributional Family that mimics your data.
Then you need to decide on your design matrix (which variables to include in your model and how to combine them)? This process is best done through an evaluative, trial and error process that combines both statistics and judgment.

