2010 RPM Basic Ratemaking Workshop Session 3: Introduction to Increased Limit Factors Pat Thorpe, ACAS, MAAA Manager & Associate Actuary Increased Limits & Rating Plans Division

Insurance Services Office, Inc.

Agenda

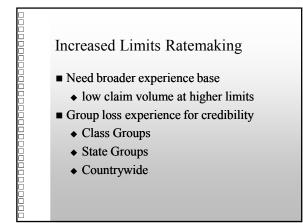
- Increased vs. Basic Limits Ratemaking
- Loss Severity Distributions
- Effects of Trend
- By Limit and Layer
- Components of ILF Calculation
- Mixed Exponential Methodology
- Deductible and Layer Pricing

CAS Exam 5 Reference: Basic Ratemaking Chapter 11: Special Classification *

Geoff Werner, FCAS, MAAA Claudine Modlin, FCAS, MAAA EMB America LLC

* Candidates studying for Exam 5 should refer to the CAS text, rather than this workshop presentation.

Liability Lines of Business


- Premises/Operations and Products (GL)
- and Products (GL) Protection (D&O) Medical Professional E-Commerce
- Commercial Auto
- Personal Auto
- Farm
 - Personal (Individual or within Homeowner Policy)
- Lawyers Professional

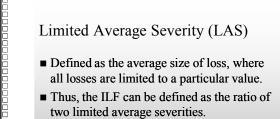
Management

- Business Owners
- Employment-Related Practices
- Other Professional

Basic Limits Ratemaking

- Use large volume of losses capped at basic limit for detailed, experience-based analysis.
- Able to produce relativities by
 - ♦ Class
 - ♦ Territory
 - ♦ Tiers

Increased Limit Factor Definition


Expected Costs at the desired policy limit

Expected Costs at the Basic Limit

KEY ASSUMPTION:

Claim Frequency is <u>independent</u> of Claim Severity

This allows for ILFs to be developed by
an examination of the relative
severities ONLY
$$ILF_{k} = \frac{E(Erequency) \times E(Severity_{k})}{E(Frequency) \times E(Severity_{B})}$$
$$= \frac{E(Severity_{k})}{E(Severity_{B})}$$



• ILF (k) = LAS (k) \div LAS (B)

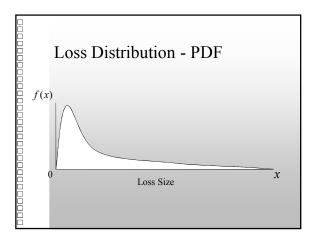
Example		
Losses	@100,000 Limit	@1 Mill Limit
50,000		
75,000		
150,000		
250,000		
1,250,000		

Example (c	cont'd)	
Losses	@100,000 Limit	@1 Mill Limit
50,000	50,000	
75,000	75,000	
150,000	100,000	
250,000	100,000	
<u>1,250,000</u>	<u>100,000</u>	
1,775,000	425,000	

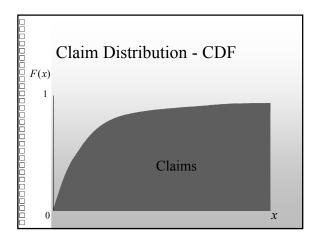
Example (cont'd)	
Losses	@100,000 Limit	@1 Mill Limit
50,000	50,000	50,000
75,000	75,000	75,000
150,000	100,000	150,000
250,000	100,000	250,000
<u>1,250,000</u>	<u>100,000</u>	<u>1,000,000</u>
1,775,000	425,000	1,525,000

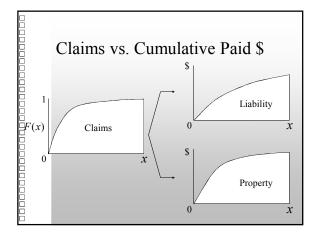
Example – Calcu	lation of ILF
Total Losses	\$1,775,000
Limited to \$100,000	\$425,000/5
(Basic Limit)	= \$85,000
Limited to \$1,000,000	\$1,525,000/5
	= \$305,000
Increased Limits Factor	\$305,000/85,000
(ILF)	= 3.588

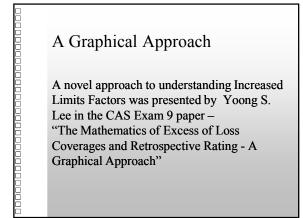
Empirio	cal Data	a - ILFs		
Lower	Upper	Losses	Occs.	Average
1	100,000	25,000,000	1,000	25,000
100,001	250,000	75,000,000	500	150,000
250,001	500,000	60,000,000	200	300,000
500,001	1 Million	30,000,000	50	600,000
1 Million	-	15,000,000	10	1,500,000
L				·I

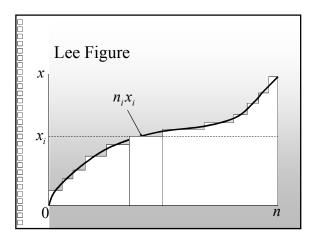


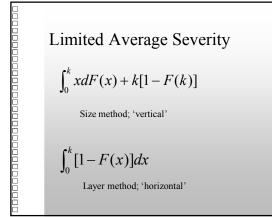
Empirical Data - ILFs

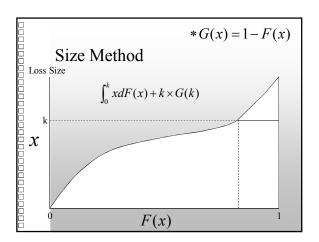

LAS @ 100,000 (25,000,000 + 760 × 100,000) \div 1760 = 57,386 LAS @ 1,000,000 (190,000,000 + 10 × 1,000,000) \div 1760 = 113,636 Empirical ILF = 1.98

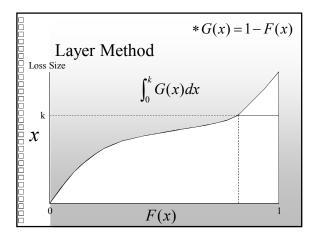

- Loss Severity Distributions are Skewed
- Many Small Losses/Fewer Larger Losses
- Yet Larger Losses, though fewer in number, are a significant amount of total dollars of loss.

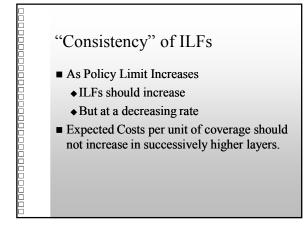


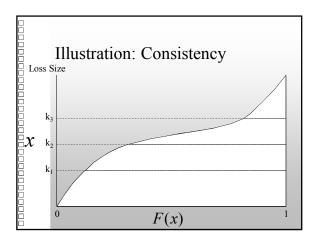


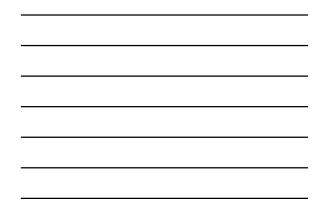






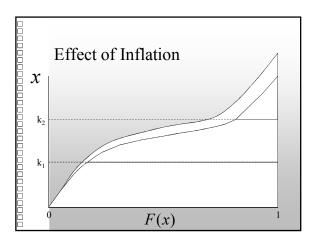





"Consist	tency	y" of IL	Fs - Ex	ample
Limit	ILF	Diff. Lim.	Diff. ILF	Margina
100,000	1.00	-	-	-
250,000	1.40			
500,000	1.80			
1 Million	2.75			
2 Million	4.30			
5 Million	5.50			

]						
	"Consistency" of ILFs - Example					
	Limit	ILF	Diff. Lim.	Diff. ILF	Marginal	
	100,000	1.00	-	-	-	
	250,000	1.40	150	0.40		
	500,000	1.80	250	0.40		
	1 Million	2.75	500	0.95		
- 1	2 Million	4.30	1,000	1.55		
	5 Million	5.50	3,000	1.20		
			1	1		
]						

"	Consis	tency	y" of IL	Fs - Ex	ample
	Limit	ILF	Diff. Lim.	Diff. ILF	Marginal
	100,000	1.00	-	-	-
	250,000	1.40	150	0.40	.0027
	500,000	1.80	250	0.40	.0016
	1 Million	2.75	500	0.95	.0019
	2 Million	4.30	1,000	1.55	.00155
	5 Million	5.50	3,000	1.20	.0004



Consis	tency	y" of IL	Fs - Ex	ampl
Limit	ILF	Diff. Lim.	Diff. ILF	Margina
100,000	1.00	-	-	-
250,000	1.40	150	0.40	.0027
500,000	1.80	250	0.40	.0016
1 Million	2.75	500	0.95	.0019*
2 Million	4.30	1,000	1.55	.00155
5 Million	5.50	3,000	1.20	.0004

Inflation – Leveraged Effect

- Generally, trends for higher limits will be higher than basic limit trends.
- Also, Excess Layer trends will generally exceed total limits trends.
- Requires steadily increasing trend.

-	ffect of +10 0,000 Limit	% Trend		
Loss Amount (\$) @ \$100,000 Limit				
Loss Allount (\$)	Pre-Trend (\$)	Post-Trend (\$)		
50,000	50,000	55,000		
250,000	100,000	100,000		
490,000	100,000	100,000		
750,000	100,000	100,000		
925,000	100,000	100,000		
1,825,000	100,000	100,000		
Total	550,000	555,000		
Realized Trend +0.9%				

Example: Effect of +10% Trend @ \$250,000 Limit				
Loss Amount (\$) @ \$250,000 Limit				
Loss Alloulit (5)	Pre-Trend (\$)	Post-Trend (\$)		
50,000	50,000	55,000		
250,000	250,000	250,000		
490,000	250,000	250,000		
750,000	250,000	250,000		
925,000	250,000	250,000		
1,825,000	250,000	250,000		
Total	1,300,000	1,305,000		
Realized Trend +0.4%				

	-	ffect of +10 0,000 Limit	% Trend
]	I	@ \$500,0	000 Limit
	Loss Amount (\$)	Pre-Trend (\$)	Post-Trend (\$)
	50,000	50,000	55,000
]	250,000	250,000	275,000
]	490,000	490,000	500,000
]	750,000	500,000	500,000
	925,000	500,000	500,000
	1,825,000	500,000	500,000
	Total	2,290,000	2,330,000
]]]	Realized Trend	+1.	7%

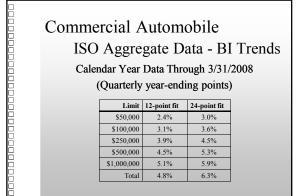
1	ffect of +10% 00,000 Limit	
Loss Amount (\$)	@ \$1,000,	000 Limit
Loss Alloulit (\$)	Pre-Trend (\$)	Post-Trend (\$)
50,000	50,000	55,000
250,000	250,000	275,000
490,000	490,000	539,000
750,000	750,000	825,000
925,000	925,000	1,000,000
1,825,000	1,000,000	1,000,000
Total	3,465,000	3,694,000
Realized Trend	+6.	6%


Example S	ummary
	ect by Limit
\$100,000	+ 0.9 %
\$250,000 :	+ 0.4 %
\$ 500,000:	+ 1.7 %
\$1,000,000	+ 6.6 %
• Overall:	+10.0 %
Trends genera	<i>lly</i> increase with the limit.

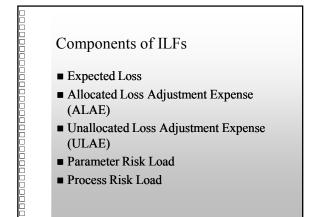
Example: Effect of +10% Trend \$150,000 xs \$100,000					
I	\$150,000 excess	of \$100,000 layer			
Loss Amount (\$)	Pre-Trend (\$)	Post-Trend (\$)			
50,000	-	-			
250,000	150,000	150,000			
490,000	150,000	150,000			
750,000	150,000	150,000			
925,000	150,000	150,000			
1,825,000	150,000	150,000			
Total	750,000	750,000			
Realized Trend	0.0)%			

-	ffect of +10% 00 xs \$250,00	
Loss Amount (¢)	\$250,000 excess	of \$250,000 layer
Loss Amount (\$)	Pre-Trend (\$)	Post-Trend (\$)
50,000	-	-
250,000	-	25,000
490,000	240,000	250,000
750,000	250,000	250,000
925,000	250,000	250,000
1,825,000	250,000	250,000
Total	990,000	1,025,000
Realized Trend	+3.	5%

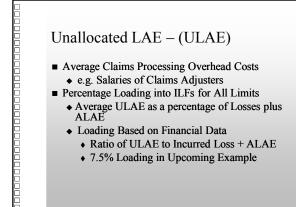
1	ffect of +10% 00 xs \$500,0	
Loss Amount (\$)	\$500,000 excess	of \$500,000 layer
Loss Amount (\$)	Pre-Trend (\$)	Post-Trend (\$)
50,000	-	-
250,000	-	-
490,000	-	39,000
750,000	250,000	325,000
925,000	425,000	500,000
1,825,000	500,000	500,000
Total	1,175,000	1,364,000
Realized Trend	+16	.1%



-	ffect of +10% ,000 xs \$1,00	
Loss Amount (\$)	\$1,000,000 excess	of \$1,000,000 layer
Loss Alloulit (\$)	Pre-Trend (\$)	Post-Trend (\$)
50,000	-	-
250,000	-	-
490,000	-	-
750,000	-	-
925,000	-	17,500
1,825,000	825,000	1,000,000
Total	825,000	1,017,500
Realized Trend	+23	.3%



rend Effect b	y Excess Laye
Layer	Net Trend
150 xs 100	+ 0.0%
250 xs 250	+ 3.5%
500 xs 500	+ 16.1%
1,000 xs 1,000	+ 23.3%
Overall	+ 10.0%

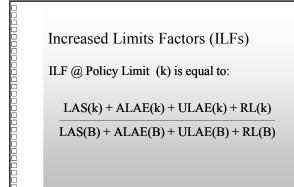


ALAE

- Claim Settlement Expense that can be assigned to a given claim --- primarily Defense Costs
- Loaded into Basic Limit
- Consistent with Duty to Defend Insured
- Consistent Provision in All Limits

ALAE Provision Determination

- Estimate ALAE/Total Limit Loss Ratio
- Find Average LAS (Limited Average Severity) Across Limits
- Multiply
 - ♦ 0.062 * 10,941 = 678
 - ◆ Use ALAE Provision at each limit

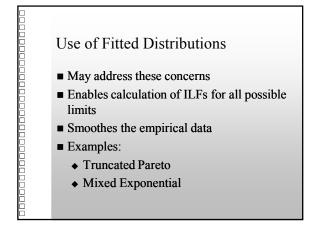


Process Risk Load

- Process Risk --- the inherent variability of the insurance process, reflected in the difference between actual losses and expected losses.
- Charge varies by limit

Parameter Risk Load

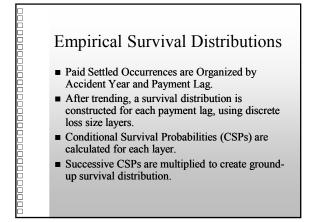
- Parameter Risk --- the inherent variability of the estimation process, reflected in the difference between theoretical (true but unknown) expected losses and the estimated expected losses.
- Charge varies by limit


Com	oonen	ts of l	LFs			
Limit	LAS	ALAE	<u>ULAE</u>	<u>PrRL</u>	<u>PaRL</u>	ILF
100	7,494	678	613	76	79	1.0
250	8,956	678	723	193	94	1.1
500	10,265	678	821	419	108	1.3
1,000	11,392	678	905	803	123	1.5
2,000	12,308	678	974	1,432	135	1.7

Issues with Constructing ILF Tables

- Policy Limit Censorship
- Excess and Deductible Data
- Data is from several accident years
 - ♦ Trend

- ♦ Loss Development
- Data is Sparse at Higher Limits

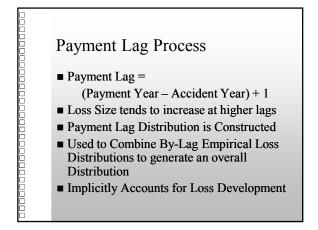


Mixed Exponential Methodology

- Trend
- Construction of Empirical Survival Distributions
- Payment Lag Process
- Tail of the Distribution
- Fitting a Mixed Exponential Distribution
- Final Limited Average Severities

Trend

- Multiple Accident Years are Used
- Each Occurrence is trended from the average date of its accident year to one year beyond the assumed effective date.



Conditional Survival Probabilities

- The probability that an occurrence exceeds the upper bound of a discrete layer, given that it exceeds the lower bound of the layer is a CSP.
- Attachment Point must be less than or equal to lower bound.
- Policy Limit + Attachment Point must be greater than or equal to upper bound.

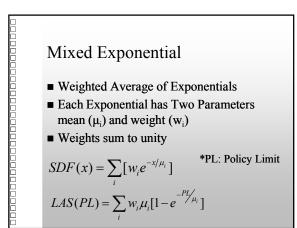
Empirical Survival Distributions

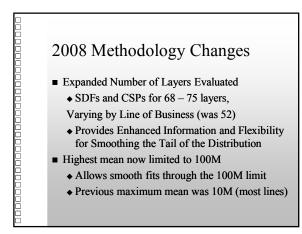
- Successive CSPs are multiplied to create ground-up survival distribution.
- Done separately for each payment lag.
- Uses 52 (or more) discrete size layers.
- Allows for easy inclusion of excess and deductible loss occurrences.

Paymen	t Lag	Proce	SS
Acc. Year	Lag 1	Lag 2	Ratio of
	Occ	Occ	Lag 2 / 1
2002		2,850	
2003	10,000	3,000	0.300
2004	11,000	3,100	0.282
2005	12,000	3,500	0.292
2006	13,000	3,750	0.288
2007	14,000		
Total 03-06	46,000	13,350	0.290

Lag Weights Lag 1 wt. = 1 ÷ k Lag 2 wt. = R1 ÷ k Lag 3 wt. = R1 × R2 ÷ k

- Lag 4 wt. = $R1 \times R2 \times R3 \div k$
- Lag 5 wt. = $R1 \times R2 \times [R3^2 \div (1 R3)] \div k$
- Where $k = 1 + R1 + [R1 \times R2] \div [1 R3]$


Lag Weights


- Represent % of ground-up occurrences in each lag
- Umbrella/Excess policies not included
- R1, R2, R3 estimated via maximum likelihood.

Tail of the Distribution

- Data is sparse at high loss sizes
- An appropriate curve is selected to model the tail (e.g. a Truncated Pareto).
- Fit to model the behavior of the data in the highest credible intervals then extrapolate.
- Smoothes the tail of the distribution.
- A Mixed Exponential is then fit to the resulting Survival Distribution Function

Simple Exponential
• Mean parameter:
$$\mu$$

• Policy Limit: PL
 $SDF(x) = e^{-x/\mu} = 1 - CDF(x)$
 $LAS(PL) = \mu[1 - e^{-PL/\mu}]$

Mixed Exponential

2007 Commercial Auto I/L Review

- Number of individual exponentials vary by state group/table
- Range between four and seven exponentials
- Highest mean limited to 10,000,000

Mixed Exponential

2008 Commercial Auto I/L Review

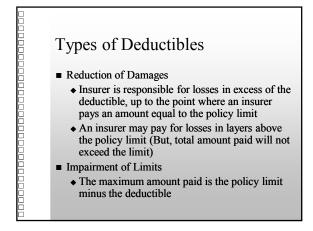
- Number of individual exponentials vary by state group/table
- Range between nine and eleven exponentials
- Highest mean limited to 100,000,000
- Additional CSP layers evaluated (68 vs. 52)

	ample of Actual Fitted				
D	istribution				
	Mean	Weight			
	2,763	0.824796			
	24,548	0.159065			
	275,654	0.014444			
	1,917,469	0.001624			
	10,000,000	0.000071			

Calculation of "Raw" ILF

$$LAS(PL) = \sum_{i} w_{i} \mu_{i} [1 - e^{-PL/\mu_{i}}]$$

*PL: Policy Limit
 $LAS(100,000) = 7,494$
 $LAS(1,000,000) = 11,392$
 $ILF = \frac{LAS(1,000,000)}{LAS(100,000)} = \frac{11,392}{7,494} = 1.52$

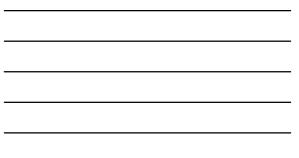


	1	Details	1
Mean	100K LAS	1M LAS	Weight
2,763	2,763	2,763	0.824796
24,548	24,130	24,548	0.159065
275,654	83,869	268,328	0.014444
1,917,469	97,437	779,227	0.001624
10,000,000	99,502	951,626	0.000071
Wtd. Average	7,494	11,392	1.000000

Deductibles

- Types of Deductibles
- Loss Elimination Ratio
- Expense Considerations

Impairi	ment	of L	imits	Exa	mple	Э
Loss Size	# of Claims	Total Losses	Average Loss	Losses Net of Deductible		
	Cianto	103.03	10.5	\$100	\$200	\$5
0 to 100	500	30,000	60	0	0	
101 to 200	350	54,250	155	19,250	0	
201 to 500	550	182,625	332	127,625	72,625	
501 +	335	375,125	1120	341,625	308,125	207
Total	1,735	642,000	370	488,500	380,750	207
Loss Eliminated				153,500	261,250	434
L.E.R.				0.239	0.407	


Deductibles (example 1) Example 1: Policy Limit: \$100,000 Deductible: \$25,000 Occurrence of Loss: \$100,000 Reduction of Damages Impairment of Limits Loss - Deductible Loss does not exceed Pol. Limit, so: =100,000 - 25,000=75,000 Loss - Deductible (Payment up to Policy Limit) =100,000 - 25,000=75,000

 (Payment up to Policy Limit)
 =100,000 - 2

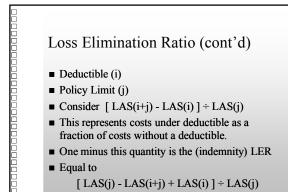
 Payment is \$75,000
 Payment is \$

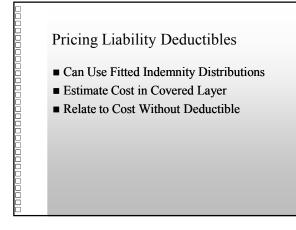
 Reduction due to Ded. is \$25,000
 Reduction due

Payment is \$75,000 Reduction due to Ded. is \$25,000

Deductibles (exa	ample 2)
Policy Limit:	\$100,000
Deductible:	\$25,000
Occurrence of Loss	: \$300,000
Reduction of Damages	Impairment of Limits
Loss - Deductible	Loss exceeds Policy Limit, so:
= 300,000 - 25,000 = 275,000	Policy Limit - Deductible
(Payment up to Policy Limit)	= 100,000 - 25,000 = 75,000
Payment is \$100,000 Reduction due to Ded. is \$0	Payment is \$75,000 Reduction due to Ded. is \$25,000

Liability Deductibles

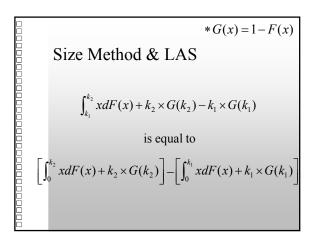

- Reduction of Damages Basis
- Apply to third party insurance
- Insurer handles all claims
 - ♦ Loss Savings
 - ♦ No Loss Adjustment Expense Savings
- Deductible Reimbursement
 - Risk of Non-Reimbursement
- Discount Factor

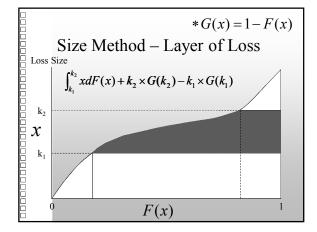

Deductible Discount Factor

- Two Components
 - ◆Loss Elimination Ratio (LER)
 - Combined Effect of Variable & Fixed Expenses
 - This is referred to as the Fixed Expense Adjustment Factor (FEAF)

Loss Elimination Ratio

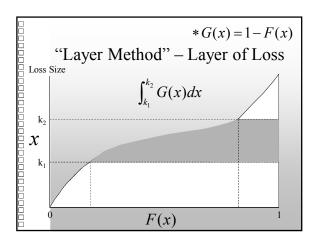
- Net Indemnity Costs Saved divided by Total Basic Limit/Full Coverage Indemnity & LAE Costs
- Denominator is Expected Basic Limit Loss Costs





*
$$G(x) = 1 - F(x)$$

Limited Average Severity - Layer


$$\int_{k_1}^{k_2} x dF(x) + k_2 \times G(k_2) - k_1 \times G(k_1)$$
Size method; 'vertical'

$$\int_{k_1}^{k_2} G(x) dx$$
Layer method; 'horizontal'

Summary

- Increased vs. Basic Limits Ratemaking
- Loss Severity Distributions
- Effects of Trend
- By Limit and Layer
- Components of ILF Calculation
- Mixed Exponential Methodology
- Deductible and Layer Pricing

Pat Thorpe Manager & Associate Actuary Insurance Services Office, Inc. 201-469-2537 pthorpe@iso.com