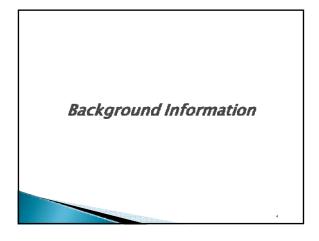


CAS RPMS - Chicago - March 2010


2

Agenda

- Background Information
- ▶ Data
- Uses
- Strategies and Plans
- Summary
- Open Discussion/Questions

Panelists

- Art Cadorine, ISO
- ▶ Pete Marotta, ISO
- Tracy Spadola, Teradata

• • • •

A Look Back

- 13 Categories of questions 1850: A & H coverage in US 1851: states start insurance company examinations 1853: NY annual report expanded requires more data 1851: Lloyds established
- 1871: Lloyds established 1871: National Convention of Insurance Cor (NCIC) fire and marine blank 1873: MA adopts first standard fire policy
- 1873: Ma adopts first standard fire pol 1898: auto liability coverage 1899: auto collision coverage 1902: auto property damage coverage 1911: first workers' comp policy
- 1911: NCIC model reserve law 1922: National Council on Compensation Insurance
- 1922: HV law regulates insurers to file premiums and loss separtence in conformance with approve disatification 1923: HV requires Casually Experience Exhibit 1945: Such Caran Ferguson enacted by Congress 1948: insure regulations/law regulations/law regulations 1948: insurance Departe Exhibit Introduced 1949: North Compare Statistical Plans, nate and 1949: Insurance Departe Exhibit Introduced 1967: ACORD formed to rease standardized operational forms
- operational forms 1969: Schedule P changed to calendar/accident 1969: Schedule P changed to calendar/accident year basis 1971: ISO ganizatione from several national insurance 1971: ISO ganizatione 1983: Insurance Value Added Nervork (IVANS); 1983: Insurance Value Added Nervork (IVANS); 1996: Utalance Value Added Nervork (IVANS); 1996: Graham-Lack-Billey passed by Congress 2002: Sarbanes-Oxley passed by Congress 2003: CA data Insech Bilw

6

How Much Information Is There in the World?

- Michael Lesk (Network World, October 28, 2003)-
 - including sounds and images there are thousands of petabytes of information
 - T.K. Landauer "How much do people remember?", *Cognitive Science*, Oct/Dec 1986: the human brain holds 200 MB of information

Kilobyte (KB)	1.000 bytes OR 103bytes	
raidojie (reb)	2 Kilobytes: A Typewritten page.	
	100 Kilobytes: A low-resolution photograph.	
Megabyte (MB)	1,000,000 bytes OR 10 ⁶ bytes	
	1 Megabyte: A small novel OR a 3.5 inch floppy disk.	
	2 Megabytes: A high-resolution photograph.	
	5 Megabytes: The complete works of Shakespeare.	
	10 Megabytes: A minute of high-fidelity sound.	
	100 Megabytes: 1 meter of shelved books.	
	500 Megabytes: A CD-ROM.	
Gigabyte (GB)	1,000,000,000 bytes OR 10° bytes	
	1 Gigabyte: a pickup truck filled with books.	
	20 Gigabytes: A good collection of the works of Beethoven.	
	100 Gigabytes: A library floor of academic journals.	
Terabyte (TB)	1,000,000,000 bytes OR 1012 bytes	
	1 Terabyte: 50000 trees made into paper and printed.	
	2 Terabytes: An academic research library.	
	10 Terabytes: The print collections of the U.S. Library of Congress.	
	400 Terabytes: National Climactic Data Center (NOAÅ) database. 1.000.000.000.000 bytes OR 1015 bytes	
Petabyte (PB)	1 Petabyte: 3 years of EOS data (2001).	
	2 Petabyte: 3 years of EOS data (2001). 2 Petabytes: All U.S. academic research libraries.	
	20 Petabytes: Production of hard-disk drives in 1995.	
	200 Petabytes: All printed material.	
Exabyte (EB)	1,000,000,000,000,000 bytes OR 1019 bytes	
	2 Exabytes: Total volume of information generated in 1999.	
	5 Exabytes: All words ever spoken by human beings.	
Zettabyte (ZB)	1,000 EBS	

How Much Information Is There in the World?

- University of California, San Diego
 - June 2008 announced a 3 year study to quantify the amounts and kinds of information being produced worldwide
 - The "How Much Information?" study will be completed by a multi-disciplinary, multiuniversity faculty team supported by corporate and foundation sponsorship
 - http://giic.ucsd.edu

How Much Information Is There in the World?

- University of California, Berkeley
 - "How Much Information 2003?", senior researchers Peter Lyman and Hal R. Varian
 - Print, film, magnetic and optical:
 - 5 exabytes in 2002
 - 92% on magnetic media
 - · Doubles every 3 years/quadruples in 2 years
 - Telephone, radio, TV, Internet: 18 exabytes in 2002
- http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/

Storage Medium	2002 Terabytes Upper Estimate	2002 Terabytes Lower Estimate	1999- 2000 Upper Estimate	1999-2000 Lower Estimate	% Change Upper Estimates
Paper	1,634	327	1,200	240	361
Film	420,254	76,69	431,690	58,209	-31
Magnetic	5187130	3,416,230	2,779,760	2,073,760	871
Optical	103	51	81	29	281
TOTAL:	5,609,121	3,416,281	3,212,731	2,132,238	74.5

Medium	2002 Terabytes		
Radio	3,488		
Television	68,955		
Telephone	17,300,000 532,897		
Internet			
TOTAL	17,905,340		

The 21st Century Data Manager

From insurance data managers to enterprise data managers, managing many types of data including insurance data

New problems to solve

- Climate change (NAIC survey)
- Premium leakage
- Fraud
- Loss control
- Predictive models
- ▶ ERM

New Media sources

Optical/graphical:

- Satellite imagery, maps, photos · Video: risk assessment, claims handling
- Voice: call centers, scripts, fraud detection

14

15

- Cellular/telephonic:
- · Embedding cellular connectivity
- RFIDs
- Telematics, EDRs
 Claims reporting via cell phone apps
 Loss control

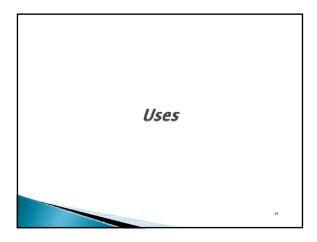
- Internet
- · For standard insurance functions · Social media: communication and mining

Expanded scope

- Privacy: in sync with Chief Privacy Officer
- C-level: in sync with business strategies
- Quality
 - Broader application to new uses of data,
 - $^{\circ}$ More emphasis on external and an enterprise view

16

17


Standards implementation

New data types

- GIS
- ▶ GPS
- → Traffic
- Weather
- Health/Medical
- ▶ Pharma
- Risk components

New tools/techniques

- Metadata repositories, data dictionaries, MDM,
- ▶ ETL
- Data profiling, audits and controls
- Data and text mining
- Entity resolution
- Visualization
- Longitudinal functionality
- Encryption

- Value of Predictive modeling dependent on Quality Information responding to what is needed
 Underwriting

 - Rating
 Claims administration
 - $\circ~$ Fraud detection and prevention
 - Operations
- Reserving Opinions and being held legally responsible for the data that is being used

20

21

- Ratemaking and adequate, responsive classification systems · Current not a year old to respond to changing situations
- Catastrophe information

Financial Officers

- Sarbanes Oxley requirements
- ▹ SEC Financial Reports

- Solvency II requirements
- Risk Based Capital Requirements

Underwriters/Business Managers

22

24

- Increased automation
- Accurate experience modifications
- Individual insured pricing
- Current market conditions
- Proper exposure
- Premium leakage
- ∘ Pre-fill
- Claims management
- Loss Control
- Distribution channels/new markets

What is Strategic Data Planning?

- An alignment of Business Vision, Mission, Goals and Initiatives to the underlying data and information of an organization
- Requires an Understanding of:
 Your Direction in 18–24 months and in five years
 - Industry direction in 18-24 months and in five years
- Opportunities for your organization
- Target benchmarks
 Data and Information
 Available
- Needed
- Data Gaps

Data - treated like all corporate assets

Why Strategic Data Planning?

- Facilitate alignment and traceability of significant IT investments to their respective business drivers
- Provide a process and a set of tools to facilitate Business and IT planning and decision-making
- IT planning and decision-making Maintain a common and consistent view of data that is
- shared company wide
- Aids good corporate governance and promotes data transparency
- Poorly-managed data WILL result in faulty business decisions

Data and information support corporate decision-making and provide competitive advantage

25

27

Components of an Enterprise Data Strategy The Rules, Tools, and Schools... Organizational level: • Information Governance • Data Stewardship • Data Architecture • Data and Process Models • Training and Education

Key Components of Strategic Data Planning

- Strategic Data Planning is primarily a Business, not an IT function.
- IT critical to any enterprise data strategy.
- Actuaries are uniquely positioned in an organization - data savvy as data definers and users, senior business level visibility, etc. - to be prime movers in Strategic Data Planning.

Best Practices

- + Establish a Corporate or Chief Data Steward
- Foster data and data quality standards Structure organization to promote good data
- management and data quality
- Data flows from business processes
- Manage DQ as close to the source as possible
- · Establish processes to maximize data quality and utility
- Design and maintain data, systems and reporting mechanisms in a manner that promotes good data management and data quality

28

29

Strategic Data Planning & Enterprise Risk Management

- An understanding of risk exposures across and beyond the organization
- Market Risk, Credit Risk, Operational Risk, as well as Insurance Risk
- What impact does your investment portfolio have on your operations
- operations
 What impact does fluctuating currency have?
 What risks are your key stakeholders subject to?
 Enterprise Risk Management brings in a "new" level and source of data and information that needs to be managed

Summary

What You Should Be Doing to Be a 21st Century Data Manager

- Promote data governance within the organization
- Define and follow enterprise data strategies
- Support the interoperability of data within the organization and with trading partners
- Metadata, metadata, metadata, ...
- Know and vet third party data resources

What You Should Be Doing to Be a 21st Century Data Manager

- Control access to your granular data resources
- Develop and implement comprehensive and flexible data quality measures
- Remember that data management applies to structured and unstructured data sets
- Require adherence to data management best practices not only at the corporate level but also at the desk top level

Open Discussion/Questions