

Motivation

- Explore role of data in the financial crisis
- Illustrate that data was available – Much of analysis is exploratory
 - Some data mining will be illustrated
- Could have detected problems
 - Due diligence could have uncovered fraud
 Provide warning of deterioration on mortgage quality

Two Case Studies of Use of Data to Detect Problems

- •Madoff Ponzi Scheme
- Mortgage Crisis

The data

- 1991 through 2008 returns on a Madoff feeder fund
- Downloaded from internet Jan, 2009
- This analysis motivated by Markopolis testimony to congress

	Statis	tics for Different	Assets		
Return	r				
Name	Mean	Std. Deviation	Skewness	Kurtosis	
Balanced	.43%	2.87%	89	1.54	
Lng Bond	.67%	2.55%	.13	3.30	
Madoff	.83%	.70%	.77	.51	
S&P 100	.55%	4.39%	52	.84	
S&P 500	.59%	4.31%	65	1.30	
Total	.62%	3.39%	71	2.96	

	Min	and N	Лах
Asset	Median	Minimum	Maximum
Balanced	0.8%	-11.6%	5.7%
Long Bond	0.9%	-8.7%	11.4%
S&P 100	1.0%	-14.6%	10.8%
Madoff	0.7%	-0.6%	3.3%

Digit 1 2 3	Proportion 30.1% 17.6% 12.5%				
1 2 3	30.1% 17.6% 12.5%				
2 3	17.6% 12.5%				
3	12.5%				
4	9.7%				
5	7.9%				
6	6.7%				
7	5.8%				
8	5.1%				
9	4.6%				
	8 9	8 5.1% 9 4.6%	8 5.1% 9 4.6%	8 5.1% 9 4.6%	8 5.1% 9 4.6%

Madoff Case Study Conclusions

- Simple graphs and descriptive statistics could have detected the scheme
- Virtually all of them would have shown that the Madoff data deviates significantly from statistical patterns for similar assets

Observations from HMDA

- HMDA indicates lower income applicants tend to have a higher loan to income ratio
- HMDA cross-state comparison indicates states with a foreclosure problem have consistently higher loan to income ratios compared to states not experiencing a foreclosure problem

Observations from Loan Portfolio Descriptive Statistics

- Subprime loans increased to unprecedented levels
- Loan to value increased
- Documentation decreased
- Balloon payments increased

Interthinx Fraud Risk Index

- Uses detailed transaction data from loan applications processed by Interthinx's FraudGUARD System
- Uses relevant external data
 Demographic, address data
 Combination of methods

Subcomponents of Fraud Risk Index

- Property Value
 Is appraisal value accur
- Identity

 True identity of loan applicant? Is credit data
- accurate?
- Occupancy
 - Is applicant misrepresenting intent to occupy home?
- Income
 - Is income accurately stated?

The Data

- HMDA Data
- LISC ZIP Foreclosure Needs Score
 Subprime component
- Subprime componentForeclosure component
- Disclosure component
- http://www.housingpolicy.org/foreclosure-response.html
- Zip Code Demographic Data

Independent Variable	Importance	Normalized Importance		
Denial Percent	.027	100.0%		
Mean Denial Score	.027	99.9%		
PctApprove	.024	88.5%		
ZipCodePopulation	.020	72.6%		
PctPropNot1-4Fam	.019	69.5%		
Median Rate Spread	.017	61.6%		
PInCom	.016	60.5%		
HouseholdsPerZipcode	.015	56.1%		
Mean LTV Ratio	.014	52.7%		

IMDA Data	Table II.5 - Means On Variables				
	Cluster				
K-moons	the second s	1	2	3	
IN-INGAINS	Avg Loan Amount	297.23	566.96	163.80	
ciustering	Average Income	165.71	356.66	87.26	
applied to loan	Mean LTV ⁴⁴ Ratio	2.53	2.38		
characteristics	Rate Spread - mean	4.84	4.54		
but not result	Median LTV Ratio	2.29	2.09		
data (i.e.,	Median Rate Spread	4.40	3.95		
approval)	Percent Applicants High LTV		3.8		
	Pct Applicants High Rate Spread				
	Percent Manufactured, Multi Family Houses				
	Pct Home Improvement		56.5		
	Percent Refinance		52.5		
	Pct Owner Occupied	18.1	28.4		

Limitations of Data • Origination Year vs Calendar Year • Origination Year

Data Limitations

- As a result calendar year default rates are usually primarily attributable to earlier origination years
- It is likely that the 2007 default rates are largely driven by conditions in earlier years
- This affects interpretation of tree results

Observations

- Approval/Denial rate was an important variable for foreclosure and subprime problems
 This may be a lagged effect. Low approval rates in 2007 reflect recognition of foreclosure problem originating in prior years when loose underwriting standards led to approval of risky and/or fraudulent loans
- Population and interest rate spread are additional important predictors of subprime problems
- Loan to income is an important predictor of foreclosures

