
1

Open Source Text Open Source Text
MiningMining

Mathew Flynn, PhDMathew Flynn, PhD
Louise Francis, FCAS, MAAALouise Francis, FCAS, MAAA

Rationale For PaperRationale For Paper

Text mining is a new and promising technology Text mining is a new and promising technology
for analyzing unstructured text datafor analyzing unstructured text data
Commercial text mining software can be Commercial text mining software can be
expensive and difficult to learnexpensive and difficult to learn
Several free open source languages can Several free open source languages can
perform text mining, but without help perform text mining, but without help thaythay can be can be
difficult to learndifficult to learn
In this session we will provide a miniIn this session we will provide a mini-- tutorial to 2 tutorial to 2
open source productsopen source products

Two Open Source Products for Two Open Source Products for
Text MiningText Mining

Perl Perl –– a text processing languagea text processing language

R R –– a statistical and analytical language a statistical and analytical language
with text mining functionality provided by a with text mining functionality provided by a
text mining package tmtext mining package tm

2

The DataThe Data

Text mining can be applied to many common Text mining can be applied to many common
taskstasks

Internet searchesInternet searches
Screening emails for spamScreening emails for spam
Analyzing free form fields in underwriting and claims Analyzing free form fields in underwriting and claims
filesfiles
Analyzing survey dataAnalyzing survey data

We illustrate the last 2We illustrate the last 2
Survey data can be downloaded from CAS web Survey data can be downloaded from CAS web
site.site.

Mini TutorialMini Tutorial

We will give tutorial on using Perl and R We will give tutorial on using Perl and R
for text miningfor text mining
Download the survey dataDownload the survey data
Follow our examplesFollow our examples

The Survey DataThe Survey Data

From 2008 CAS From 2008 CAS QuinquennialQuinquennial SurveySurvey
What are the top two issues that will What are the top two issues that will
impact the CAS in the next five years?impact the CAS in the next five years?

Survey Question: Top Two Issues Affecting CAS
A crisis that could affect our ability to "regulate" ourselves.
A need to deal more thoroughly with non-traditional risk management approaches
Ability of members to prove they are more than just number crunchers
ability to convince non-insurance companies of the value/skills offered by CAS
members.

3

PerlPerl

Go to Go to www.Perl.orgwww.Perl.org
Download PerlDownload Perl
Run execute file (or run active Run execute file (or run active perlperl))
the Windows command search must be the Windows command search must be
correct for Windows to find the desired correct for Windows to find the desired
perl.exeperl.exe

www.Perl.orgwww.Perl.org

Good ReferencesGood References

Practical Text Mining with PerlPractical Text Mining with Perl by by BilisolyBilisoly
(2008) is an excellent resource for text (2008) is an excellent resource for text
mining in Perl mining in Perl
Perl for DummiesPerl for Dummies (Hoffman, 2003) (Hoffman, 2003)
provides a basic introduction including provides a basic introduction including
needed header informationneeded header information

4

Some Key ThingsSome Key Things
Perl must be run from DOS. One gets to DOS Perl must be run from DOS. One gets to DOS
by finding the Command Prompt on the by finding the Command Prompt on the
Programs menu Programs menu
Before running Perl switch to the Perl directory Before running Perl switch to the Perl directory
(i.e., if Perl was installed and it is in the folder (i.e., if Perl was installed and it is in the folder
named Perl, in DOS, type named Perl, in DOS, type ““cdcd C:C:\\PerlPerl””).).
Programs need to be saved in text processing Programs need to be saved in text processing
software. We recommend Notepad rather than software. We recommend Notepad rather than
Word, as some of the features of Word cause Word, as some of the features of Word cause
unexpected results when running a program. unexpected results when running a program.
We recommend using the extension .pl.We recommend using the extension .pl.

Some Key Things cont.Some Key Things cont.
The header line of a Perl program is dependent on the The header line of a Perl program is dependent on the
operating system. operating system.
To run a Perl program type the following at the command To run a Perl program type the following at the command
prompt:prompt:

Perl Perl program_nameprogram_name input_file_nameinput_file_name, output_file_name, output_file_name[1][1]
The input and output files are only required if the The input and output files are only required if the
program requires a file, and the file name is not program requires a file, and the file name is not
contained in the program itself.contained in the program itself.

The input and output file may be contained in the The input and output file may be contained in the
program code, as illustrated in some of our examples, program code, as illustrated in some of our examples,
rather than entered at runtime. rather than entered at runtime.

Parsing TextParsing Text

Identify the spaces, punctuation and other Identify the spaces, punctuation and other
non alphanumeric characters found in text non alphanumeric characters found in text
documents and separating the words from documents and separating the words from
these other charactersthese other characters
Most computer languages (and Most computer languages (and
spreadsheets) have text functions that spreadsheets) have text functions that
perform the search and substring functions perform the search and substring functions
to do this to do this
Perl has special functions for parsing textPerl has special functions for parsing text

5

The split functionThe split function

split(/split(/separating separating character(scharacter(s))//, string, string))
ExampleExample

$Response = "Ability of members to prove $Response = "Ability of members to prove
they are more than just number crunchers";they are more than just number crunchers";
@words =split (/ /, $Response); @words =split (/ /, $Response);

Complications of split functionComplications of split function

More than one spaceMore than one space
@words =split (/ [@words =split (/ [\\s+]/, $Response);s+]/, $Response);

Other separatorsOther separators
Use substitute functionUse substitute function

Simple parse program: Parse2.plSimple parse program: Parse2.pl

#!perl #!perl --ww
Parse2.pl# Parse2.pl
Program to parse text string using one or more spaces # Program to parse text string using one or more spaces
as separatoras separator
$Response = "Ability of members to prove they are $Response = "Ability of members to prove they are
more than just number crunchers";more than just number crunchers";
@words =split (/@words =split (/\\s+/, $Response); #parse words in strings+/, $Response); #parse words in string
Loop through words in word array and print them# Loop through words in word array and print them
foreachforeach $word (@words) {$word (@words) {
print "$wordprint "$word\\n";n";
}}

6

Less Simple parse program: Less Simple parse program:
Parse3.plParse3.pl

#!perl #!perl --ww
Parse3.pl# Parse3.pl
Program to parse a sentence and remove punctuation# Program to parse a sentence and remove punctuation
$Test = "A crisis that could affect our ability to 'regulate' $Test = "A crisis that could affect our ability to 'regulate'
ourselves.";# a test string with punctuationourselves.";# a test string with punctuation
@words =split (/[@words =split (/[\\s+]/, $Test); # parse the string using spacess+]/, $Test); # parse the string using spaces
Loop through words to find non punctuation characters# Loop through words to find non punctuation characters
foreachforeach $word (@words) {$word (@words) {
while ($word =~ /(while ($word =~ /(\\w+)/gw+)/g) {) {
match by 1 or more alphanumeric characters. These will be the# match by 1 or more alphanumeric characters. These will be the
words excluding punctuation words excluding punctuation
print "$1 print "$1 \\n"; #print the first match which will be the word of n"; #print the first match which will be the word of
alphanumeric characters alphanumeric characters
}}
}}

Read in survey data and parseRead in survey data and parse
#!#!perlperl --ww
Enter file name # Enter file name withtextwithtext data heredata here
$$TheFileTheFile ==““Top2Iss.txt";Top2Iss.txt";
open the file# open the file
open(INFILEopen(INFILE, $, $TheFileTheFile) or die "File not found";) or die "File not found";
read in one line at a time# read in one line at a time
while(<INFILE>) {while(<INFILE>) {
chomp; # eliminate end of line chomp; # eliminate end of line charachtercharachter
s/[.?!"()'{},&;]//gs/[.?!"()'{},&;]//g; # replace punctuation with null; # replace punctuation with null
s/s/\\// /g; # replace slash with space// /g; # replace slash with space
s/s/\\--//g//g; #replace dash with null; #replace dash with null
s/^ //g; #replace beginning of line spaces/^ //g; #replace beginning of line space
print "$_print "$_\\n"; # print cleaned line outn"; # print cleaned line out
@word=split(/[@word=split(/[\\s+]/); # parse lines+]/); # parse line
}}

Print it out alsoPrint it out also
#!#!perlperl --ww
##parsecomplex.plparsecomplex.pl
Enter file name # Enter file name withtextwithtext data heredata here
$$TheFileTheFile ="Top2Iss.txt";="Top2Iss.txt";
open the file# open the file
open(INFILEopen(INFILE, $, $TheFileTheFile) or die "File not found";) or die "File not found";
read in one line at a time# read in one line at a time
while(<INFILE>) {while(<INFILE>) {
chomp; # eliminate end of line chomp; # eliminate end of line charachtercharachter
s/[.?!"()'{},&;]//gs/[.?!"()'{},&;]//g; # replace punctuation with null; # replace punctuation with null
s/s/\\// /g; # replace slash with space// /g; # replace slash with space
s/s/\\--//g//g; #replace dash with null; #replace dash with null
s/^ //g; #replace beginning of line spaces/^ //g; #replace beginning of line space

print "$_print "$_\\n"; # print cleaned line outn"; # print cleaned line out
@word=split(/[@word=split(/[\\s+]/); # parse lines+]/); # parse line

foreachforeach $word (@word) {$word (@word) {
print "$word,"}print "$word,"}

print "print "\\n";n";
}}

7

Word SearchWord Search

First, read in the accident description fieldFirst, read in the accident description field
For each claimFor each claim

Read in each wordRead in each word
If the lower case of the target word is found If the lower case of the target word is found
output a 1 for the new indicator variable, output a 1 for the new indicator variable,
otherwise output a 0.otherwise output a 0.

SearchTarget.plSearchTarget.pl
SearchTarget.plSearchTarget.pl
$target = $target = ““((regulatonregulaton)";)";
initialize file variable containing file with text data# initialize file variable containing file with text data
$$TheFileTheFile ==““Top2Iss1.txt";Top2Iss1.txt";
open(INFILEopen(INFILE, $, $TheFileTheFile) or die "File not found"; # open the file) or die "File not found"; # open the file
initialize identifier variables used when search is successful# initialize identifier variables used when search is successful
$i=0;$i=0;
$flag=0;$flag=0;
read each line# read each line
while(<INFILE>) {while(<INFILE>) {
chomp;chomp;

++$i;++$i;
put input line into new variable# put input line into new variable
$Sentence = $_;$Sentence = $_;
parse line of text# parse line of text
@words = split(/[@words = split(/[\\s+]/,$Sentence);s+]/,$Sentence);
$flag=0;$flag=0;
foreachforeach $x (@words) {$x (@words) {
if (if (lc($xlc($x) =~ /$target/) {) =~ /$target/) {
$flag=1;$flag=1;
} }

}}
print lines with target variable to screen# print lines with target variable to screen
print "$i $flag $Sentence print "$i $flag $Sentence \\n";n";
}}

Using Target in AnalysisUsing Target in Analysis

Homeowner
Claim

Mean
Severity

No

2,376.6

Yes

6,221.1

8

Text StatisticsText Statistics

The length of each word is tabulated within The length of each word is tabulated within
a loop. A key line of code is:a loop. A key line of code is:

$$count[length($xcount[length($x)] +=1; #increment)] +=1; #increment
counter for words of this lengthcounter for words of this length

Perl Program for Word LengthsPerl Program for Word Lengths
Length.plLength.pl
#!#!perlperl --ww
Enter file name with text data here# Enter file name with text data here
$$TheFileTheFile ="Top2Iss.txt";="Top2Iss.txt";
open the file# open the file
open(INFILEopen(INFILE, $, $TheFileTheFile) or die "File not found";) or die "File not found";
read in one line at a time# read in one line at a time
while(<INFILE>) {while(<INFILE>) {
chomp; # eliminate end of line characterchomp; # eliminate end of line character
s/[.?!"()'{},&;]//gs/[.?!"()'{},&;]//g; # replace punctuation with null; # replace punctuation with null
s/s/\\// /g; # replace slash with space// /g; # replace slash with space
s/s/\\--//g//g; #replace dash with null; #replace dash with null
s/^ //g; #replace beginning of line spaces/^ //g; #replace beginning of line space
print "$_print "$_\\n"; # print cleaned line outn"; # print cleaned line out
@word=split(/[@word=split(/[\\s+]/); # parse lines+]/); # parse line

count length of each word in array @count# count length of each word in array @count
foreachforeach $x (@word) {$x (@word) {
$$count[length($xcount[length($x)] +=1 ;})] +=1 ;}

}}
$$mxcountmxcount=$#count; =$#count;
print out largest word size and frequency of each count# print out largest word size and frequency of each count
print "Count $print "Count $mxcountmxcount\\nn";";
for ($i = 0; $i <= $#count;) {for ($i = 0; $i <= $#count;) {
does word of that size exist?# does word of that size exist?
if (if (exists($count[$iexists($count[$i])) {])) {
print "There are $print "There are $count[$icount[$i] words of length $] words of length $ii\\nn";";
}}
$i += 1; # increment loop counter$i += 1; # increment loop counter
}}

HashesHashes
A hash is like an array, but can be distinguished from an A hash is like an array, but can be distinguished from an
array in a number of ways. array in a number of ways.
An array is typically indexed with zero and integer An array is typically indexed with zero and integer
values, while a hash can be indexed with a letter or values, while a hash can be indexed with a letter or
word. word.
Instead of an index the hash has a key that maps to a Instead of an index the hash has a key that maps to a
specific array value. specific array value.

For instance, while the first entry in a Perl array is $array[0]For instance, while the first entry in a Perl array is $array[0], the , the
first entry in a hash might be $first entry in a hash might be $hash{hash{‘‘aa’’} or $} or $hash{hash{‘‘xx’’} or even } or even
$$hash{hash{‘‘hellohello’’}. (Note that the order is not relevant.) }. (Note that the order is not relevant.)

Because the time to locate a value on a hash table is Because the time to locate a value on a hash table is
independent of its size, hashes can be very efficient for independent of its size, hashes can be very efficient for
processing large amounts of data processing large amounts of data

9

Hashes cont.Hashes cont.
A hash variable begins with a % A hash variable begins with a %
A hash holding a list of words might be denoted %words. A hash holding a list of words might be denoted %words.
A hash holding the counts of words from a document A hash holding the counts of words from a document
might be %count, and the indices of the hash can be the might be %count, and the indices of the hash can be the
words themselves. words themselves.
A specific value of a hash is referenced by using a dollar A specific value of a hash is referenced by using a dollar
sign ($) in front of the hash variable name, and sign ($) in front of the hash variable name, and
referencing the specific item with brackets. referencing the specific item with brackets.

For example, the specific word homeowner is referenced as For example, the specific word homeowner is referenced as
$$words{words{‘‘homeownerhomeowner’’}. }.
Thus the indices of the hash are strings, not numbers. Thus the indices of the hash are strings, not numbers.

Use Hash Distribution of Word Use Hash Distribution of Word
FrequenciesFrequencies

Testhash.plTesthash.pl
#!#!perlperl --ww
Testhash.plTesthash.pl
Usage: # Usage: testhash.pltesthash.pl <<datafiledatafile> <> <outputfileoutputfile>>
input # input datafiledatafile must be present and a command line must be present and a command line argarg such as Top2Iss.txtsuch as Top2Iss.txt
open(MYDATAopen(MYDATA, $ARGV[0]) or , $ARGV[0]) or die("Errordie("Error: cannot open file '$ARGV[0]': cannot open file '$ARGV[0]'\\n");n");
output # output datafiledatafile must be present and a must be present and a cmdcmd line line argarg
open(OUTPopen(OUTP, ">$ARGV[1]") or , ">$ARGV[1]") or die("Cannotdie("Cannot open file '$ARGV[1]' for writingopen file '$ARGV[1]' for writing\\n");n");
print OUTP "Output results for ".$ARGV[0]."print OUTP "Output results for ".$ARGV[0]."\\n";n";
read in the file, get rid of newline and punctuation chars# read in the file, get rid of newline and punctuation chars
while($line = <MYDATA>){while($line = <MYDATA>){

chomp($linechomp($line););
eliminate punctuation# eliminate punctuation

$line =~ $line =~ s/[s/[--.?!"()'{}&;]//g.?!"()'{}&;]//g;;
$line =~ $line =~ s/s/\\ss+/ /g;+/ /g;
@words = split(/ /,$line);@words = split(/ /,$line);

foreachforeach $word (@words) {$word (@words) {
++$++$counts{lc($wordcounts{lc($word)};)};

}}
}}
sort by value (lowest to highest using counts for the key)# sort by value (lowest to highest using counts for the key)
and write the output file and screen# and write the output file and screen
foreachforeach $value (sort {$$value (sort {$counts{$acounts{$a} } cmpcmp $$counts{$bcounts{$b} }} }

keys %counts)keys %counts)
{{
print the word and the count for the word# print the word and the count for the word

print "$value $print "$value $counts{$valuecounts{$value} } \\n";n";
print OUTP "$value $print OUTP "$value $counts{$valuecounts{$value} } \\n"n"

}}
close the files# close the files
close MYDATA;close MYDATA;
close OUTP;close OUTP;

Word FrequenciesWord Frequencies
Rank Word Count P(Rank=k)

1 of 102 0.05
2 the 80 0.04
3 to 57 0.03
4 and 53 0.03
5 in 42 0.02
6 actuaries 34 0.02
7 other 27 0.01
8 from 26 0.01
9 for 25 0.01

10 erm 24 0.01
726 alternative 1 0.00
727 thin 1 0.00
728 information 1 0.00
729 industries 1 0.00
730 retire 1 0.00

10

ZipfZipf’’ss LawLaw

Stop WordsStop Words

Frequently occurring wordsFrequently occurring words
TheThe
AA
ToTo
ItIt
Do not contribute to meaning of record of Do not contribute to meaning of record of
texttext
EliminateEliminate

Substitution operatorSubstitution operator

Thus to eliminate the word Thus to eliminate the word ““thethe””, use the , use the
codecode

s/the//gs/the//g;;
Apply to multiple terms you want to Apply to multiple terms you want to
eliminateeliminate

s/[s/[--.?!"()'{}&;]//g.?!"()'{}&;]//g;;

11

Term Document MatrixTerm Document Matrix

A Table of indicator variablesA Table of indicator variables
If a word is present, a 1, otherwise a 0If a word is present, a 1, otherwise a 0

Term Data MatrixTerm Data Matrix

Ourselves cas Not That communicators/executive our approaches
1 0 0 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Word LengthsWord Lengths
Length

GL
Data Survey Data

1 1,062 21
2 4,172 309
3 5,258 298
4 5,418 215
5 2,982 153
6 2,312 143
7 2,833 213
8 1,572 161
9 1,048 216

10 591 146
11 111 92
12 156 44
13 78 61
14 19 2
15 0 3
16 1 1
17 2 0
18 1 0
19 1 0

12

Stopwords.plStopwords.pl
StopWords.plStopWords.pl
This program eliminates stop words and computes the term# This program eliminates stop words and computes the term--document matrixdocument matrix
a key part is to tabulate the indicator/count of every term # a key part is to tabulate the indicator/count of every term -- usually a wordusually a word
it may then be used to find groupings of words that create con# it may then be used to find groupings of words that create contenttent
This would be done in a separate program# This would be done in a separate program
Usage: # Usage: termdata.pltermdata.pl <<datafiledatafile> <> <outputfileoutputfile>>
$$TheFileTheFile = "Top2Iss.txt";= "Top2Iss.txt";
#$Outp1 = "OutInd1.txt"; #$Outp1 = "OutInd1.txt";
open(MYDATAopen(MYDATA, $, $TheFileTheFile) or) or die("Errordie("Error: cannot open file");: cannot open file");
open(OUTP1, ">OutInd1.txt") or open(OUTP1, ">OutInd1.txt") or die("Cannotdie("Cannot open file for writingopen file for writing\\n");n");
open(OUTP2, ">open(OUTP2, ">OutTerms.txtOutTerms.txt") or ") or die("Cannotdie("Cannot open file for writingopen file for writing\\n");n");
read in the file each line and create hash of words# read in the file each line and create hash of words
create grand dictionary of all words# create grand dictionary of all words
initialize line counter# initialize line counter

$i=0;$i=0;
while (<MYDATA>){while (<MYDATA>){

chomp($_);chomp($_);
s/[s/[--.?!"()'{}&;]//g.?!"()'{}&;]//g;;
s/^ //g;s/^ //g;
s/,//gs/,//g;;
s/s/\\dd/ /g;/ /g;
s/(s/(\\sofsof\\ss)/ /g;)/ /g;

s/(s/(\\stosto\\ss)/ /g;)/ /g;
s/(s/(\\sthesthe\\ss)/ /g;)/ /g;
s/(s/(\\sandsand\\ss)/ /g;)/ /g;
s/(s/(\\sinsin\\ss)/ /g;)/ /g;
s/(Thes/(The\\ss)/ /g;)/ /g;
s/(s/(\\sforsfor\\ss)/ /g;)/ /g;
s/(s/(\\asas\\ss)/ /g;)/ /g;

s/(As/(A\\ss)/ /g;)/ /g;
s/(s/(\\sinsin\\ss)/ /g;)/ /g;

s/(s/(\\swithswith\\ss)/ /g;)/ /g;
s/(s/(\\sansan\\ss)/ /g;)/ /g;
s/(s/(\\swithswith\\ss)/ /g;)/ /g;
s/(s/(\\saresare\\ss)/ /g;)/ /g;

Stopwords.plStopwords.pl cont.cont.
s/(s/(\\stheysthey\\ss)/ /g;)/ /g;
s/(s/(\\sthansthan\\ss)/ /g;)/ /g;
s/(s/(\\sassas\\ss)/ /g;)/ /g;
s/(s/(\\sbysby\\ss)/ /g;)/ /g;
s/s/\\ss+/ /g;+/ /g;

if (not /^$/) { #ignore empty linesif (not /^$/) { #ignore empty lines
@words = split(/ /);@words = split(/ /);

foreachforeach $word (@words) {$word (@words) {
++$++$response[$i]{lc($wordresponse[$i]{lc($word)};)};
++$++$granddict{lc($wordgranddict{lc($word)};)};

}}
++$i;++$i;

}}
}}
$nlines = inlines = $i--1;1;
for $i (0..$nlines) {for $i (0..$nlines) {

foreachforeach $word (keys %$word (keys %granddictgranddict) {) {
if (if (exists($response[$i]{$wordexists($response[$i]{$word})) }))
{{
++$ ++$ indicator[$i]{$wordindicator[$i]{$word}; }}; }
else else

{{
$$indicator[$i]{$wordindicator[$i]{$word}=0;}=0;

}}
print OUTP1 "$print OUTP1 "$indicator[$i]{$wordindicator[$i]{$word},"; },";

}}
print OUTP1 "print OUTP1 "\\n";n";

}}
foreachforeach $word (keys %$word (keys %granddictgranddict) {) {

print OUTP2 "$print OUTP2 "$word,$granddict{$word}word,$granddict{$word}\\nn";";
}}

close the files# close the files
close MYDATA;close MYDATA;
close OUTP1;close OUTP1;
close OUTP2;close OUTP2;

OutPutOutPut MatrixMatrix

1 0 0 1 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

