Data Visualization Techniques and Practices

Introduction to GIS Technology

Michael Greene Advanced Analytics & Modeling, Deloitte Consulting LLP March 16th, 2010

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Introduction

Geometry

Spatial Quantification of Data

Case Study – Snow's Cholera Map

Conclusion

Introduction

Why is Geographic Data Important?

Mapping and geographic techniques allow complex patterns to be represented visually – revealing hidden patterns

Geographic Information Systems - GIS

Geographic Information Systems are technology suites that allow analysts to quantitatively represent data in a spatial plane

- Coordinate systems i.e., longitude, latitude
- Representations of spatial concepts through geometry
 - Points, Lines, Polygons
- Allow for multiple "layers" of data to be represented on a single plane

Background and History

GIS technology has its roots in Urban Planning and areas that require layered information presented on maps

- Many sources are public from public databases
 - Roads
 - Land parcels
 - Boundaries, such as counties, Census areas, ZIP codes

- 7 -

Geometry

Basis of GIS is Geometry

Polygons

- State boundaries
- ZIP Codes

Points

- Cities (on a large map)
- Addresses (Longitude/Latitude)

Lines

- Roads/Highways
- Rivers, natural boundaries

Coordinate Systems

Measurement Framework Geographic: spherical coordinates

 Planimetric: projected coordinates onto a 2-dimensional surface

Unit of Measurement Miles, feet, meters, kilometersDecimal degrees

Other Properties Projection definition

Spheroid of reference

Datum

Standard parallels, central meridian etc

Geographic Coordinate Systems

Source: ESRI ArcView

- Spherical measure of position in longitude and latitude (angles such as -180° - +180°)
- Northern Hemisphere and Western Hemisphere often have positive values
- Often more applicable to storage and usage of global data
- Local views plotted using a spherical system can appear distorted

Projected Coordinate Systems

Source: ESRI ArcView

Deloitte.

- 12 -

Spatial Quantification of Data

What makes GIS so powerful?

ZIP	Median	Median	Loss	Relative
Code	Age	Income	Freq.	Loss
				Severity
02115	30	60,000	0.155	-10%
02116	35	80,000	0.13	+1%
02114	45	120,000	0.08	+5%
02118	40	50,000	0.25	+5%

Merging data associated with geographic areas and individual points can lead to powerful results

Integration of 2-D Space in Analysis

- Association of quantitative data and spatial techniques
- Spatial calculations take 2 dimensions into consideration
- Application of clustering, smoothing, and other mathematical methods

Deloitte<mark>.</mark>

Clustering Techniques

Hotspot Analysis can be used to uncover hidden clusters

- Getis-Ord G* Local averaging of a quantity within a distance radius
- Cluster and Outlier Analysis
 - Moran's I Spatial Autocorrelation

Developed during analysis of crime statistics

Deloitte<mark>.</mark>

Case Study – Snow's Cholera Map

Snow's Cholera Map

AS_RPM10_Geospatia_Data_Visualization_and_Analysis_FIN

- 18 -

Spatial Autocorrelation

- Moran's I: Spatial Autocorrelation
- Based on spatial distance and a feature (number of deaths)
 - Range -1 to 1 indicates clustering
 - Statistical test: Z score
- Cholera Outbreak:
 - Moran's I: 0.0103
 - Z score: 2.45 (p value < .05)</p>

Hot Spot Analysis

Getis-Ord G* - Hot Spot Analysis

- Draw buffers around each point
- Calculate sum of value intersecting points within each buffer
- Compare to expected, calculate Z-score

Conclusion

Applications to Insurance

Improved territory analysis

- GAMS/GLM
- Clustering
- Fraud detection
 - Clustering: Moran's I
 - Hot Spot Analysis: Getis-Ord G*
- Agent analysis and insights
 - Source and dispersion of customer base
 - Distribution of quotes versus current book

Tools and References

ESRI ArcGIS Product

- http://www.esri.com

■ R

- http://www.r-project.org
- R GIS package

John Snow's Cholera Map

- Prof. Waldo Tobler
 National Center for Geographic Information and Analysis
 Geography Department
 University of California Santa Barbara CA 93106-4060
 email: tobler@geog.ucsb.ed
- http://www.ncgia.ucsb.edu/pubs/snow/snow.html
- http://www.asdar-book.org/RC1

Deloitte.

Copyright © 2010 Deloitte Development LLC. All rights reserved.

Member of Deloitte Touche Tohmatsu