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Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and 
spirit of the antitrust laws.  Seminars conducted under the auspices of the CAS 
are designed solely to provide a forum for the expression of various points of 
view on topics described in the programs or agendas for such meetingsview on topics described in the programs or agendas for such meetings.  

Under no circumstances shall CAS seminars be used as a means for competing 
companies or firms to reach any understanding – expressed or implied – that 
restricts competition or in any way impairs the ability of members to exercise 
independent business judgment regarding matters affecting competition.  

It is the responsibility of all seminar participants to be aware of antitrustIt is the responsibility of all seminar participants to be aware of antitrust 
regulations, to prevent any written or verbal discussions that appear to violate 
these laws, and to adhere in every respect to the CAS antitrust compliance 
policy.
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Agenda

Spline Regression Recap

Generalized Additive Modeling Theory

Geo-spatial GAM examplep p
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Spline Regressionp g



Modeling Non-Linear Patterns

• Linear models only have 
to be linear in the 
parameters.

Polynomial Regression Example

• By cleverly transforming 
our variables we can 0.

8
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raw data
lrr = a + b*AGE
lrr = a + b*AGE + c*(AGE-mean(AGE)) 2̂

model just about any 
non-linear relationship.
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• Often in practice, adding 
a quadratic and maybe 
cubic terms will suffice. 0.
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• Here, adding a quadratic 
term results in a 
reasonable fit. -0
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The Limits of Polynomial Regression

• In more complex cases, 
adding polynomial terms 
is not enough. 4

Pollyannish Polynomials

• This (exaggerated) 
example illustrates the 
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limitations of polynomial 
regression.
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• Adding quadratic and 
cubic terms is better 
than nothing, but doesn’t 
fully capture the pattern. 7.
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degree = 2y p p

• Even an 8th degree 
polynomial regression 7.

6

degree  2
degree = 3
degree = 4
degree = 5
degree = 6
degree = 7
degree = 8
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provides only a rough 
approximation. 0 10 20 30 40

Building Age



Cubic Spline Regression

• In more complex cases 
such as this, cubic spline 
regression is an excellent 4

Why Knot

alternative.

• Here we have a series of 
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cubic polynomials joined 
at a series of manually 
selected knots.

• The model is “smooth” 8.
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• The model is smooth  
in the sense that it has 
continuous 1st and 2nd

derivatives at each knot.
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• In this case, a cubic 
spline regression with 5 
knots achieves an 

ll fi (R2 0 93)

7.
6 spline regression

knots

R2 = 0.927
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excellent fit (R2=0.93).
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Basis Basics

• The basic trick is to 
identify a collection of 
basis functions {bi(x)} 

0

Cubic Spline Basis Functions

i
that can approximate any 
functional form.
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• In addition to polynomial 
terms, our spline 
regression includes a 
linear combination of these ( )

k
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– Aside:  the “hockey stick functions” 
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s de t e oc ey st c u ct o s
used in the MARS algorithm are the 
lower-degree analog of these basis 
functions. 
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Overly Caffeinated Spline Regression

• Spline regression is 
great, but we must be 
careful when selecting 4

A Knotty Problem

the knots.

• Too few knots  not all 
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of the patterns will be 
reflected in the model.

Too man knots  o
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• Too many knots  our 
model will fit random 
noise in the data.
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• Capturing too much 
random noise can lead to 
a model that performs 7.

6
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poorly out-of-sample.
– We’ll come back to this point. 0 10 20 30 40

Building Age



Generalized Additive Models



Generalized Additive Models

• Recall the basic ideas of Generalized Linear Models:
1. g(μ) ≡ g(E[Y]) = α + β1X1 + β2X2 + … + βNXN

2. Y|{X} ~ exponential family|{ } po a a y

• Generalized Linear Models:  g(μ) = linear combination of predictors

• Generalized Additive Models: the linear predictor can also contain 
one or more smooth functions of covariates.

g(μ) = β∙X + f1(X1) + f2(X2) + f3(X3,X4)+ …

• Note that some of the f can be functions of more than one predictor.p

• This brings us a lot of flexibility… but we need to figure out how to 
represent the functions {f}.
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Generalized Additive Models

• GAM form:

g(μ) = β∙X + f (X ) + f (X ) + f (X X )+g(μ) = β∙X + f1(X1) + f2(X2) + f3(X3,X4)+ …

• How do we represent the functions {f}?

• Cubic splines offer an obvious answer.

• But recall that we had to choose the knot placements manually• But recall that we had to choose the knot placements manually.

• This isn’t good enough:  we need a principled (and fairly automatic) 
way to specify a model that:way to specify a model that:

• Fits the “true” linear and non-linear patterns in the data
• But does not “over-fit” the data
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Intuitively, it might seem that we need a way to determine the 
optimal placement of knots.



Fitting Signal, Not Noise

• Alternate idea: rather than worrying about which basis functions we 
need, we can fix the knots and basis functions ahead of time… but 
control the smoothness through penalized least squares.

• Rather than minimize SSE:  ( ) −
i j ijji Xy 2β

( )• We can minimize penalized SSE: ( ) [ ] dxxfXy
i j ijji   ⋅+− 2''2 )(λβ

• The integral is a measure of the complexity of f(x).  
• Recall that our basis functions have continuous 2nd derivatives.

• The λ “smoothness” parameter determines how much we should p
penalize the complexity introduced by our cubic spline basis functions.

• As λ  0,  the GAM approaches an un-penalized regression spline
• As λ  ∞, the GAM approaches linearity
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Penalized Least Squares

• The penalized SSE formula reflects a fundamental tradeoff.

( ) [ ] dxxfXy   ⋅+− 2''2 )(λβ( ) [ ] dxxfXy
i j ijji   + )(λβ

More Basis Functions More Basis FunctionsMore Basis Functions
Lower bias:  Our spline model 
fits the data better  1st term is 
smaller.

More Basis Functions
Higher Variance:  there is a 
greater chance that the model will 
perform poorly out-of-sample 
2nd term is larger.

Fewer Basis Functions
Higher bias:  Our spline model 
fits the data worse  1st term is

Fewer Basis Functions
Lower Variance:  there is a 
smaller chance that the model will

• This logic is sound but we must determine the appropriate

fits the data worse  1 term is 
larger.

smaller chance that the model will 
perform poorly out-of-sample 
2nd term is smaller.
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• This logic is sound… but we must determine the appropriate 
value of λ.



Choosing λ

• We need a principles way to select λ before solving for the {β} 
parameters that minimize penalized SSE:

( )
We use cross validation to do this

( ) [ ] dxxfXy
i j ijji   ⋅+− 2''2 )(λβ

• We use cross-validation to do this.

• Select λ that minimizes SSE 
calculated using leave-one-out g
cross-validation.

• Conceptually the same idea used 
to determine the appropriate cost-
complexity parameter in the CART 
algorithm.
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To Summarize

• Rather than manually select “just the right set” of knots and basis 
functions…

• We scatter the knots somewhat liberally…  

But add a ‘wiggliness’ penalty to the objective function used to• But add a ‘wiggliness’ penalty to the objective function used to 
estimate {β}:

( ) [ ]  2''2( ) [ ] dxxfXy
i j ijji   ⋅+− 2''2 )(λβ

• The penalty term removes the pressure to choose just the right set of 
knots.
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• In case you’re skeptical, let’s try it.



Back to Our Example

• With “manual” spline 
regression we were 
judicious in our placement 4

Knot to Worry

of knots.

• With GAM, we can err on 
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the side of liberalism.

• A 30-knot GAM slightly 
outperforms both a 10- 8.
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outperforms both a 10-
knot GAM and our 5-knot 
spline regression.
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• A 100-knot GAM is 
virtually indistinguishable 
from the 30-knot GAM!

– Run time is the primary 

7.
6

5-knot Spline Regression
10-knot GAM Model
30-knot GAM Model
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disadvantage of choosing too many 
knots. 0 10 20 30 40

Building Age



Generalized Additive Models
for Geo-Spatial Analysis



Background – Territorial Ratemaking

• Common techniques for reflecting geography in insurance models:
• Credibility models
• Adding geo-demographic, crime, weather, traffic … variables to models
• Spatial smoothing concepts

• Generalized Additive Models are a practical way to incorporate 
spatial smoothing in one’s modelspatial smoothing in one’s model.

• Some advantages:
Familiar paradigm: GAM is a generalization of GLM• Familiar paradigm:  GAM is a generalization of GLM

• Latitude and longitude can be used as model inputs
• Lat/long can be incorporated alongside demographic variables
• Use of offsets enables “modular” approachUse of offsets enables modular  approach
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Standard references:
• Generalized Additive Models by Hastie and Tibshirani (not tied to spline regression)
• Generalized Additive Models by Simon Wood (paradigm followed here)



California House Value Data

• One record per California 
block group.

• Target: 
– median house value

• Predictors:
– Median income
– Median house age

A # b d– Average # bedrooms
– Latitude
– Longitude

• Let’s fit a traditional GLM 
model on the first 3 
predictors, and then bring 
in lat/long
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in lat/long.



The GAM is Afoot

Methodology:
1. Fit Gamma GLM to model house value as a linear combination of:

– IncomeIncome 
– Age
– # Bedrooms

ROOMSAGEINCOMEVALUE)log( βββα +++=

2. Calculate the linear predictor for each data point:  η ≡ β⋅X

ROOMSAGEINCOMEVALUE 321)log( βββα +++=

ROOMSAGEINCOME 321
ˆˆˆˆ βββαη +++≡

3. Fit a Gamma GAM on f(lat,long) using η as an offset.

),()log( longlatfVALUE +=η
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– Note:  For this illustration, tensor product basis functions with 400 knots were used.



Score Distributions

),()log( 321 longlatfROOMSAGEINCOMEVALUE ++++= βββα

• The 3-factor GLM doesn’t 
come close to capturing 
all of the variation in

California Median House Values (Block Group-Level)

Raw Data
GLM Modeled
GAM Modeledall of the variation in 

house values.

• Adding f(location) helps

GAM Modeled

• Adding f(location) helps.
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Error Diagnostics

• The GAM model clearly explains more of the variation in house values.
• R2 GLM: 0.54
• R2 GAM: 0.67

Note: Raw Data capped at $500K –
accounts for unusual residual pattern.
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Geo-Spatial Diagnostics of the GLM Model

• The 3-factor GLM gets things directionally right:
– Inland house values are lower than coastal house values
– High values clustered around the major cities
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ROOMSAGEINCOMEVALUE 321)log( βββα +++=



Geo-Spatial Diagnostics of the GLM Model

• But the GLM model generally:
– Over-estimates house values in the central valley
– Under-estimates house values in along the coast

The 3-factor GLM model 
generally under-
estimates the coastal 
enclaves of expensiveenclaves of expensive 
houses.
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Geo-Spatial Diagnostics of the GLM Model

• But the GLM model generally:
– Over-estimates house values in the central valley
– Under-estimates house values in along the coast

The 3-factor GLM model 
generally under-
estimates the coastal 
enclaves of expensiveenclaves of expensive 
houses.

At the same time, 
it over-estimates 
house values in the 
central valley
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Location, Location, Location

• Implication:  “Location matters.”
• The GLM model shoves geo-spatial variation into the error term. 

All else equal, houses inAll else equal, houses in 
coastal/urban areas are 
worth more than houses in 
rural/inland areas.

Adding further 
demographic predictors 
will help, but not eliminate 
the need to include location 
in the model.

-- miles from the coast 
-- population density
-- education
-- neighborhood amenities 
-- …
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GAM Diagnostics

The GAM model is still not perfect, but a big improvement over the        
3-factor GLM model. 

),()log( 321 longlatfROOMSAGEINCOMEVALUE ++++= βββα ),()log( 321 longlatfROOMSAGEINCOMEVALUE ++++ βββα
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Further improvements could result from superimposing one or more local GAM models built for specific 

metropolitan areas.


