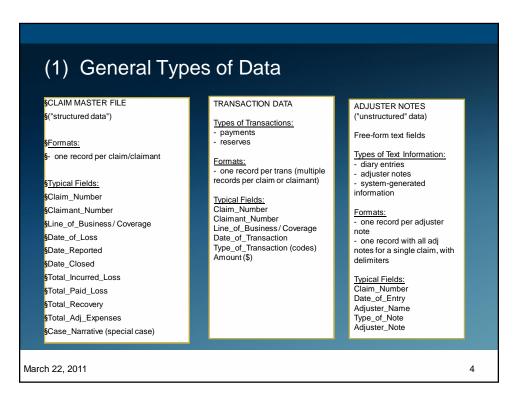


Presented at CAS Ratemaking and Product Management Seminar March 22, 2011 (New Orleans)


Presented by Philip S. Borba, Ph.D. Milliman, Inc. New York, NY

OVERVIEW OF PRESENTATION

- 1) General Types of Data in Property-Casualty Claim Files
- 2) Examples of "Real World" Unstructured Data
 - USDOL: Fatality and Catastrophe Injury Data File
 - NHTSA: Complaint Data
- 3) Processing Unstructured Data
- 4) Incorporating Unstructured Data into Data Analytics

Strong caveat: Statistics in this presentation are for a very limited number of narrowly-defined cases from narrowly from USDOL and NHTSA public-access databases. The cases and statistics are intended to demonstrate the principles of processing and analyzing unstructured data and not for drawing conclusions or inferences concerning the subject matter of the data.

VVI	y Unstructured Data DATA?
§ WI	ny the interest in unstructured data?
	Claim segmentation
	• Open claims can be segmented for claim closure strategies (eg., "waiting for attorney response," "waiting for IME")
	Improved recognition of claims with attorney representation
	Predictive analytics
	Able to capture information not available in structured data
§ Ty	pes of unstructured data
	Claim adjuster notes
	Diary notes
	Underwriting notes
	Policy reports
	Depositions

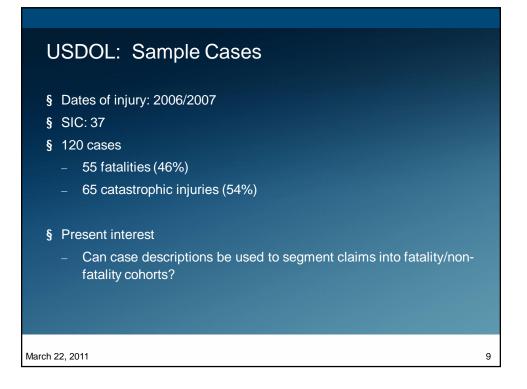
2) EXAMPLES OF "REAL WORLD" UNSTRUCTURED DATA

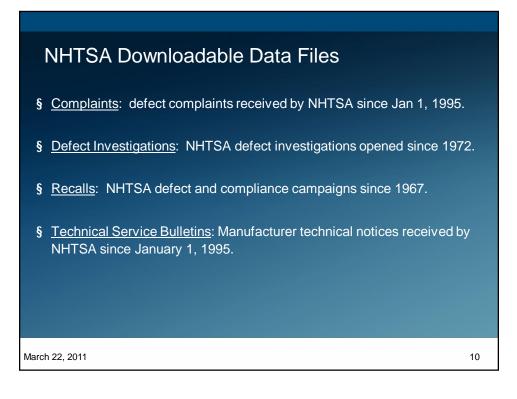
§ US Department of Labor

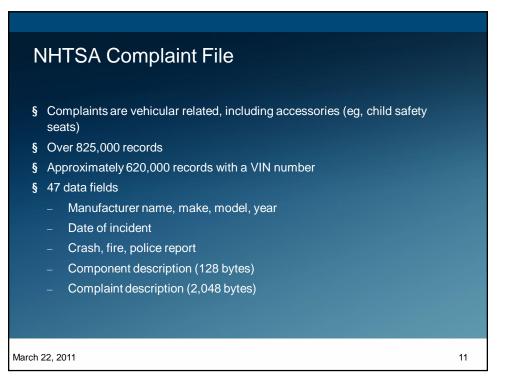
- Fatality and Catastrophe Investigation Summary
- Accessible case files on completed investigations of fatality and catastrophic injuries occurring between 1984 and 2007
- § National Highway Traffic Safety Administration
 - Four downloadable files
 - Complaints
 - Defects
 - Recalls
 - Technical Service Bulletins

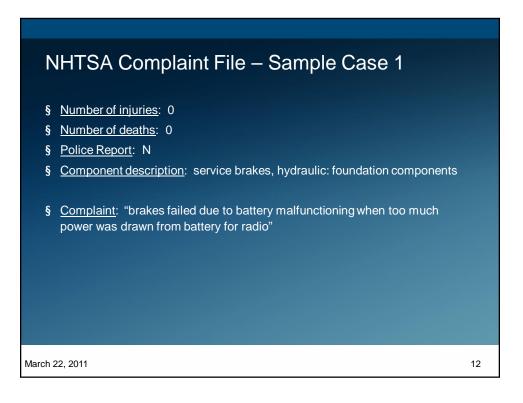
6

8

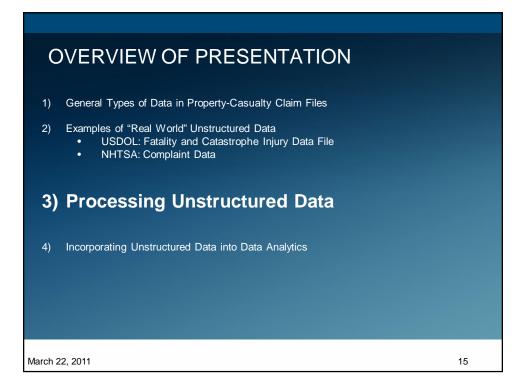

USDOL Fatality and Catastrophe Injury File --Characteristics

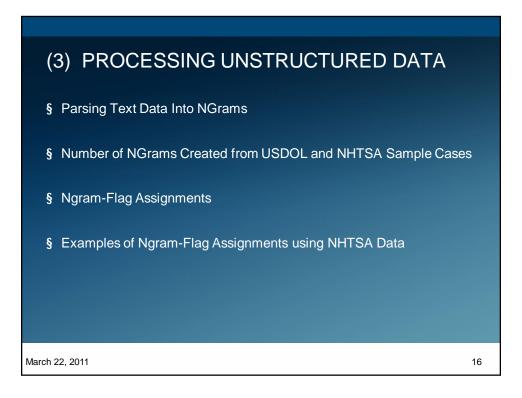

- S Cases are incidents where OSHA conducted an investigation in response to a fatality or catastrophe. Summaries are intended to provide a description of the incident, including causal factors.
- § Public-access database has completed investigations from 1984 to 2007.
- § 15 data fields
 - Structured data fields
 - Date of incidence, date case opened
 - SIC, establishment name
 - Age, sex
 - Degree of injury, nature of injury
 - Unstructured data fields
 - Case summary (usually 10 words or less)
 - Case description (up to approximately 300 words)
 - Key words (usually 1-5 one- and two-word phrases)


March 22, 2011


USDOL: Sample Case -- Fatality

- § <u>Accident</u>: 202341749
- § Event Date: 01/23/2007
- § Open Date: 01/23/2007
- § <u>SIC</u>: 3731
- § Degree: fatality
- § Nature: bruise/contusion/abrasion
- § Occupation: welders and cutters
- § Case Summary: Employee Is Killed In Fall From Ladder
- § Employee #1 was a welder temporarily brought in to assist in a tanker conversion. Employee #1 was using an arc welder to attach deck angle iron. Periodically Employee #1 had to adjust the resistance knobs. According to the only witness, Employee #1 stepped off the ladder and held onto metal angle iron (2.5 ft apart) to allow the witness to pass. Employee #1 apparently slipped and fell approximately 20 foot to his death.
- § Keywords: slip, fall, ladder, welder, arc welding, contusion, abrasion

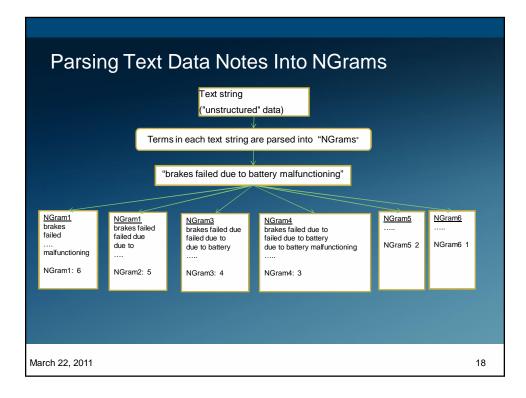



NHTSA Complaint File – Sample Case 2

- § Number of injuries: 1
- § Number of deaths: 0
- § Police report: Y
- § Component description: air bags: frontal
- § <u>Complaint</u>: Accident. 2008 Mercedes c-350 rear ended a delivery truck. Mercedes began smoking immediately and caught fire within one minute. Within 3-5 minutes engine compartment and passenger compartment were fully engulfed in flame. Driver escaped before car burned. Airbags did not deploy in this front end crash. Driver had concussion and facial injuries from hitting, possibly steering wheel. Driver sustained other injuries as well.

March 22, 2011

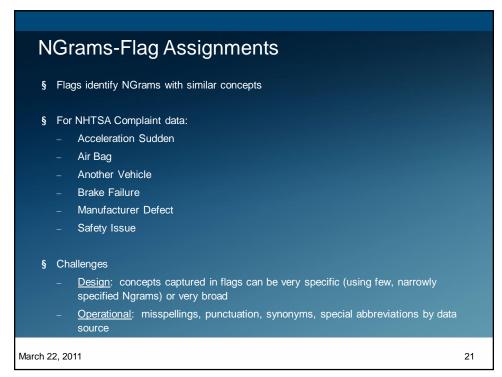
NHTSA: Sample Cases Model year: 2008 Complaints with a VIN 4,478 cases 6% with casualty ("casualty" defined to be a complaint with an injury or death) Present interest Can case descriptions be used to improve the ability to predict the incidence of a casualty?



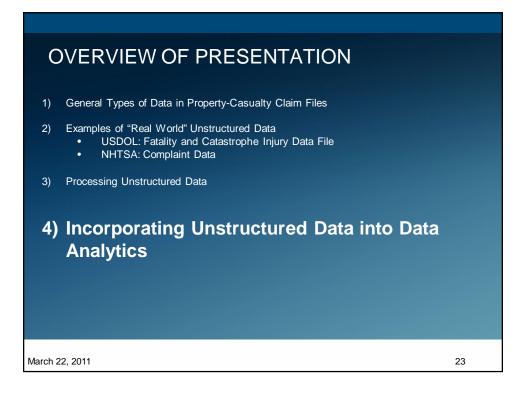
Summary Characteristics of USDOL and NHTSA Sample Cases

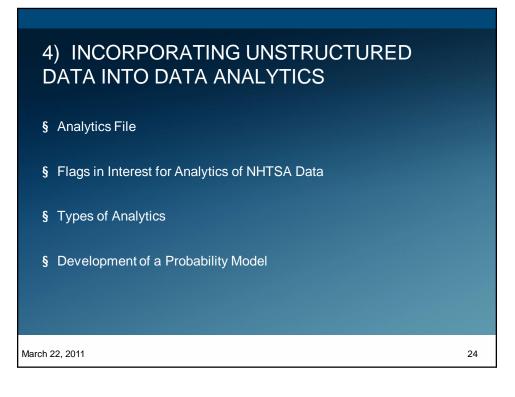
§ Number of cases and number of terms in sample cases

	USDOL	NHTSA
Number of cases	120	4,478
Number of bytes in case descriptions		
Average number of bytes	531	1,103
Median number of bytes	428	689
Q1 / Q3 number of bytes	275 / 691	418 / 1,284
Maximum number of bytes	1,935	19,383



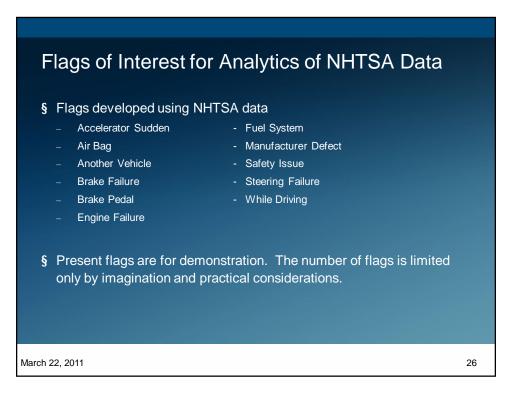
Number of NGrams Created from USDOL and NHTSA Sample Cases


- § Each case description is parsed into NGram1-NGram6
- § Process removes certain NGram1-NGram3 not expected to be needed in any claim-segmentation or analytics
- § Longer case descriptions increase the number of NGrams per case


	USDOL	NHTSA
Number of cases	120	4,478
Size of NGram		
NGram1	8,468	682,234
NGram2	10,722	847,523
NGram3	10,729	842,700
NGram4	10,606	832,777
NGram5	10,484	821,382
NGram6	10,363	810,139
March 22, 2011		

injuries.		s were more (less) prevalent	among latai
	Ngram	Percent of Cases where Case was a Fatality	
	Ladder	75%	
	Forklift	70%	
	Conveyor	67%	
	AVERAGE	46%	
	Was Hospitalized	3%	
	Amputation	0%	
Strong caveat:	AVERAGE Was Hospitalized Amputation	46% 3%	narrowly-defined

Example NHTSA I		g Assignments foi	
	Ngram	Flag	
	Air bag	Air Bag	
	Air bags		
	Airbag		
	Airbags		
	Brakes defective	Break Failure	
	Brakes failed		
	Brake failure		
	Defective brakes		
	Accelerated suddenly	Sudden acceleration	
	Sudden acceleration		
March 22, 2011			22



§ Analytics File

- Combines structured data and flags created from the unstructured data
- One record for each complaint (or claim, claimant, injury, etc.)

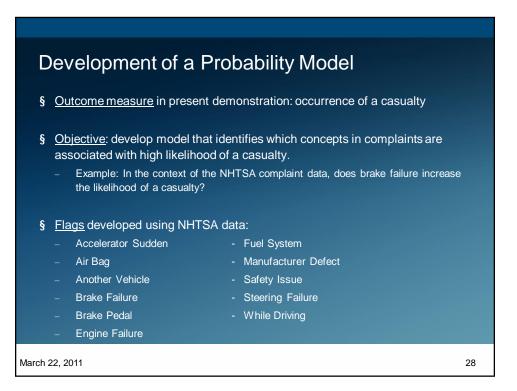
§ NHTSA example

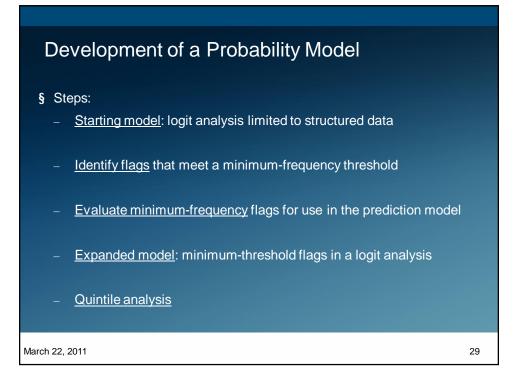
- Developed from structured data
 - Manufacturer name, make, model, year
 - Date of incident
 - Crash, fire, police report
 - Developed from unstructured data (case descriptions)
 - 0/1 flags for break failure, accelerator failure, sudden acceleration

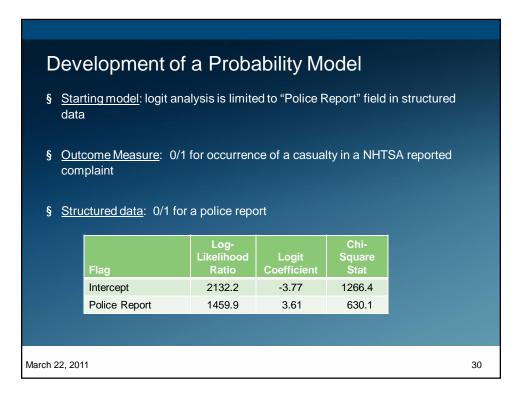
Types of Analytics

§ Summary Statistics

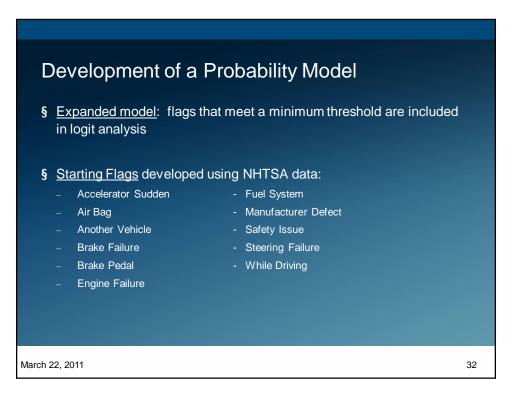
 Frequencies and averages for different breakdowns (eg, state, line of business, 0/1 flags, yes/no for outcome measure)


§ "Story" Scenarios (Predictive Modeling I)

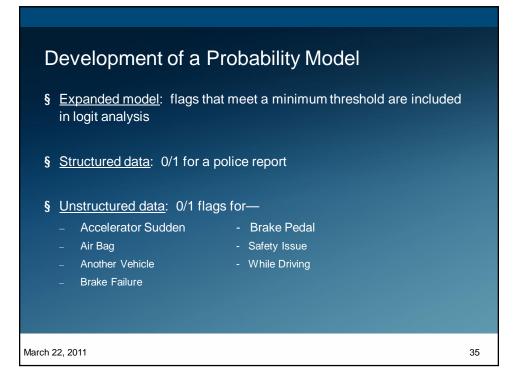

A "Story" is a particular set of results for a given set of flags.


- For example, for a given set of four flags (eg, brake failure, acceleration failure, safety hazard, steering failure), the target result is a series of four "0" and "1" flags.
- Claims fitting a Story are flagged for the target outcome (eg, likely casualty).

§ Probability Model (Predictive Modeling II)


- Model can produce an estimate for the probability of an outcome.
- Number of factors and weights assigned to the factors can vary.

Developmer	nt of a F	Probabi	lity Mode	əl
 § Quintile analysis: § Raw data: casual § Logit analysis limit Estimated procession 	ty = 6% of s ited to struc	ample case tured data:	9S	e probability of a casualty sample cases
	Count Row Pct Col Pct	Less than 0.20	0.41 – 0.60	
	No Casualty	3960 94.5 97.8	231 5.5 54.1	
	With Casualty	91 31.7 2.3	196 68.3 45.9	
March 22, 2011				31

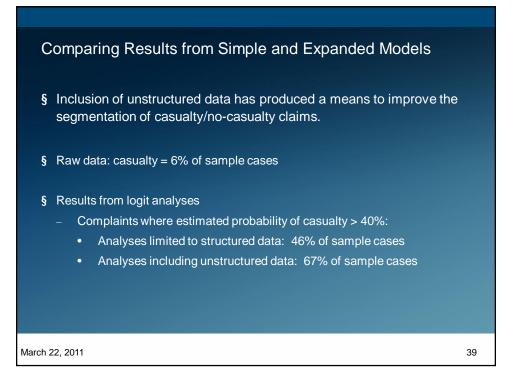


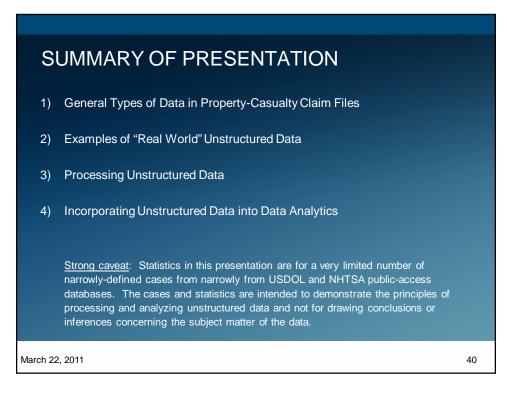
§ Identif	y flags that meet a minir	num-frequenc	y threshold	d
	Flag	Frequency in Complaints	Meets Min-Freq	
	Accelerator Sudden	0.070		
	Air Bag	0.119	\checkmark	
	Another Vehicle	0.031	\checkmark	
	Brake Failure	0.031	\checkmark	
	Brake Pedal	0.082	\checkmark	
	Engine Failure	0.012		
	Fuel System	0.028		
	Manufacturer Defect	0.006		
	Safety Issue	0.116	\checkmark	
	Steering Failure	0.020		
	While Driving	0.224	\checkmark	

Development of a Probability Model

§ Evaluate the min-freq flags for use in the prediction	n model
---	---------

	Flag	Frequency in Complaints	Correlation with 'Casualty' Outcome
	Accelerator Sudden	0.070	-0.004
	Air Bag	0.119	0.276
	Another Vehicle	0.031	0.010
	Brake Failure	0.031	0.012
	Brake Pedal	0.082	0.001
	Safety Issue	0.116	-0.069
	While Driving	0.224	0.024
	Police Report (from structured data)	0.095	0.524
March 22, 2011			


	step-wise logit and	alysis		
Inclusion Order	Flag	Log- Likelihood Ratio	Logit Coefficient	Chi- Square Stat
start	Intercept	2132.2	-3.83	1124.3
1	Police Report	1459.9	3.29	458.6
2	Air Bag	1402.3	1.24	57.0
3	Safety Issue	1388.1	-1.20	10.5
4	Accelerator Sudden	1383.4	-0.59	4.3
	Another Vehicle			
	Brake Failure			
	Brake Pedal			
	While Driving			


Development of a Probability Model

- **§** Raw data: casualty = 6%
- § Estimated probability of casualty > 60%: casualty = 69%
- **§** Estimated probability of casualty > 40%: casualty = 67%

Count Row Pct Col Pct	Less than 0.20	0.21 – 0.40	0.41 – 0.60	0.61 - 0.80
No Casualty	3972 94.8 97.8	166 4.0 65.9	4 0.1 66.7	49 1.2 31.2
With Casualty	91 31.7 2.2	86 30.0 34.1	2 0.7 33.3	108 37.6 68.8
11				

	Cor Row Col			than 20		.41 – 0.60			
	N Cas	-	94	960 4.5 7.8	ţ	231 5.5 54.1			
	W Cas		31	91 1.7 2.3	6	196 58.3 45.9			
Count Row Po Col Pc	ct		ess 0.20	0.21 0.40		0.41 0.60		0.61 - 0.80	
No Casual	ty	94	172 4.8 7.8	160 4.0 65.9	5	0.1 66.7		49 1.2 31.2	
With Casu	ualty	31	91 I.7 2.2	86 30.0 34.1)	2 0.7 33.3	7	108 37.6 68.8	

