

Estimate Attrition Using Survival Analysis

Hongyuan Wang, Ph.D. Luyang Fu, Ph.D., FCAS, MAAA

March 2011

Auto

Home

Business

STATEAUTO.COM

Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding expressed or implied that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

> Introduction

- Survival Analysis
- Cox Proportional Hazard Model
- >A case study
- ≻ Q&A

Introduction

Two Ways of Attrition

Mid-term cancellationEnd-of-term nonrenewal

Probability of Attrition: Cancellation vs. Nonrenewal

Policy Age: Month

Snapshot View of Retention/Attrition

- ➢ If there were 10,000 inforced policies at 12/31/2009, how many of them were still with the company at 12/31/2010?
- >Variable of interest: yes or no
- ➢Do not separate cancellation and nonrenewal.
- >Static view

Dynamic View of Retention/Attrition

- If there were 10,000 inforced policies at 12/31/2009, how many of them left by cancelation and nonrenewal, and when they left?
- >Variable of interest: t (time of attrition)
- Cancellation and non-renewal occurs sequentially and dynamically.
- Time-varying variables (Unemployment, GDP change, Premium Change ...) impact retention.

Why Survival Analysis?

- Better estimation of life time value: not just whether a policy will leave, but when it will leave.
- Estimate cancellation and non-renewal sequentially and simultaneously.
- Measure the impacts of time-variant macroeconomic variables on attrition by incorporating monthly macroeconomic data in the regression.

Survival Analysis

What is Survival Analysis?

- > Another name for *time to event* analysis
- Statistical methods for analyzing survival data.
- Primarily developed in the medical and biological sciences (death or failure time analysis)

Widely used in the social and economic sciences, as well as in Insurance (longevity, time to claim analysis).

What is Survival Time?

- Refers to a variable *t* which measures the time from a particular starting time (e.g., time initiated the treatment) to a particular endpoint of interest (e.g., attaining certain functional abilities).
- > Examples:

Insurance Policy: Started at Jan2005, terminated at Aug2008.

Products: Bought at Dec2006, failed at Feb2007.

Censoring

Occurs when the value of a measurement or observation is only partially known.

Left Censoring:

Example: Subject's lifetime is known to be less than a certain duration.

> Right Censoring:

Example: Subjects still active when they are lost to follow-up or when the study ends.

Survival Analysis Functions

> Survival Function S(t):

 $S(t) = \operatorname{Prob}\{T \ge t\}, \text{ here } t \ge 0;$

> Lifetime Distribution Function F(t):

F(t) = 1 - S(t) ;

> Event Density Function f(t): Prob{t $\leq T \leq t + \delta t$ } = f(t) δt ,

$$\frac{dF(t)}{dt} = f(t)$$

> Hazard Function h(t):

h(t) = f(t)/S(t)or h(t) δt = Prob{t $\leq T \leq t + \delta t | T \geq t$ };

Survival Analysis Functions

All those functions are connected.

Density function is the negative of the derivative of the survival function;

➢ Hazard function is the negative of the derivative of the log of the survival function.

$$f(t) = F'(t) = -S'(t)$$

$$h(t) = -\frac{d(\ln S(t))}{dt}$$

$$S(t) = \exp\left\{-\int_{0}^{t} h(s)ds\right\}$$

$$f(t) = h(t) \exp\left\{-\int_{0}^{t} h(s)ds\right\}$$

Survival Analysis Functions

The most popular distributions are exponential, Weibull, etc.

Exponential: $S(t) = exp(-\lambda t)$ $\lambda > 0$; $f(t) = \lambda exp(-\lambda t);$ $h(t) = \lambda ; \text{ (so no ageing)}$ Weibull; $S(t) = exp(-\beta t^{\alpha})$ $\alpha, \beta > 0;$ $f(t) = \alpha \beta t^{\alpha - 1} (exp(-\beta t^{\alpha}));$ $h(t) = \alpha \beta t^{\alpha - 1};$

 $\alpha > 1$ (increasing hazard) , $\alpha < 1$ (decreasing hazard)

Survival Analysis Data

- Calendar time of whole study (Starting day, Ending day of the whole study period)
- > Study Duration of each individual.
- > Define the *censored observations*.
- > Time measure units (Month, Year ...)
- > Define the dependent variable and independent.

Survival Analysis Data

Duration Times of Interest in Marketing							
Subdiscipline	Decision/Forecasting	Duration Time					
Pricing/Promotion	Timing of price chinages or promotions; Measuring effect of promotion	Interpurchase duration; Timing of coupon redemption					
Salesforce Management	Forecasting and managing salesforce turnover	Salesperson job duration					
New Product Development	Forecasting trial, adoption, depth of repeat purchase	Duration time from new product introduction until initial trial; Interpurchase times					
Marketing Research	Forecasting response rates; Forecasting size and composition of firm's customer base;	Time until survey response; Time until customer becomes inactive or disaffected; Time until cancellation of service contract;					

Sources: Kristiaan H. and D. C. Schmittlein, 1993, Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models; *Marketing Science*, Vol. 12, No. 4, page 396.

Cox Proportional Hazard Model

Advantages

- The dependent variable of interest (survival/failure time) is most likely not normally distributed.
- > Censoring(especially right censoring) of the Data.
- Baseline hazard function is unknown.
- > Whether and when the customer will leave.
- > Dynamics covariates and duration

Cox Proportional Hazard Model Equation

Let $h(t | x_t)$ denote the resultant hazard rate at time *t* for an individual have covariate value x_t ,

$$h(t \mid x_t) = h_0(t)e^{\beta x_t}$$

Here
$$x_t = (x_{1t}, x_{2t}, ..., x_{kt})$$
 $\beta = (\beta_1, \beta_2, ..., \beta_k)$

k is the total number of the covariates,

 β_j is the constant Proportional effect of x_j The term $h_0(t)$ is called the *baseline hazard*; it is the hazard for the respective individual when all independent variable values are equal to zero.

Cox Proportional Hazard Model Equation

We can linearize this model by dividing both sides of the equation by $h_0(t)$ and then taking the natural logarithm of both sides:

$$\ln\{h(t \mid x_t) / h_0(t)\} = \beta' x_t$$

Taking partial derivative we have $\partial \ln h(t \mid x_t, \beta) / \partial x_{it} = \beta_i$

Partial Likelihood Estimation of β $L(i \mid t, j_1, j_2, \dots, j_{n(t)}) = \frac{h_i(t)}{\sum_{k=1}^{n(t)} h_{j_k}(t)}$ (1) $L(i \mid t, j_1, j_2, \dots, j_{n(t)}) = \frac{h_0(t)e^{\beta' x_{it}}}{\sum_{k=1}^{n(t)} h_0(t)e^{\beta' x_{jkt}}}$ (2) $\beta' x$.

$$L(i \mid t, j_1, j_2, \dots, j_{n(t)}) = \frac{e^{\rho - v_{it}}}{\sum_{k=1}^{n(t)} e^{\beta' x_{j_k t}}}$$
(3)

Estimation of β is obtained by Maximizing the Product of Expression (3) over all observed duration times.

Literatures

Kristiaan H. and D. C. Schmittlein, 1993, Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models; Marketing Science, Vol. 12, No. 4, pp. 395-414. Graves S, D. Kletter, W. B. Hetzel, R. N. Bolton, 1998, A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction, *Marketing Science*, Vol. 17, No. 1, pp. 45-65. >Andreeva G., 2006, European Generic Scoring Models Using Survival Analysis, *Journal of the Operational Research Society*, Vol. 57, No. 10, pp. 1180-1187. Bellotti T. and J. Crook, 2009, Credit Scoring With Macroeconomic Variables Using Survival Analysis; *Journal of the Operational*

Research Society, Vol. 60, pp. 1699–1707.

A Case Study

Case Study Data

- > 6.5 years Commercial Line Policies.
- > The Dependent Variable:
 - Duration = The time until the policy cancellation
- > If a policy is still alive at the end of study, it is right censored (i.e. Censor = 1)
- > Monthly policy data and economic data are stacked together to get the final model data.

Annual Attrition Summary

BaseMonth	nonRenewed	Renewed	Midterm_canceled	Total	nonRenewedPer	RenewedPer	Midterm_cancelPer
200501	24,570	156,478	16,907	197,955	12.41%	79.05%	8.54%
200601	25 101	158 794	17 529	201 424	12 46%	78 84%	8 70%
200701	24,756	150.070	18.057	201,121	12.10%	79 70%	8.04%
200701	24,750	159,079	10,007	201,092	12.20%	10.19%	0.94 %
200801	24,951	160,688	19,697	205,336	12.15%	78.26%	9.59%
200901	27,398	162,875	20,787	211,061	12.98%	77.17%	9.85%

The data is for illustration purpose.

Annual Attritions by Policy Type

Line1							
BaseMonth	nonRenewed	Renewed	Midterm_canceled	Total	nonRenewedPer	RenewedPer	Midterm_cancelPer
200501	10,708	63,270	7,283	81,262	13.18%	77.86%	8.96%
200601	11,292	65,190	7,924	84,407	13.38%	77.23%	9.39%
200701	11,657	64,801	8,336	84,793	13.75%	76.42%	9.83%
200801	11,525	64,178	9,539	85,242	13.52%	75.29%	11.19%
200901	12,860	63,911	10,469	87,241	14.74%	73.26%	12.00%
Line2							
BaseMonth	nonRenewed	Renewed	Midterm_canceled	Total	nonRenewedPer	RenewedPer	Midterm_cancelPer
200501	9,630	67,757	7,101	84,488	11.40%	80.20%	8.40%
200601	9,514	66,928	7,076	83,518	11.39%	80.14%	8.47%
200701	8,666	66,705	6,799	82,170	10.55%	81.18%	8.27%
200801	8,615	68,238	7,280	84,133	10.24%	81.11%	8.65%
200901	9,611	70,428	7,516	87,555	10.98%	80.44%	8.58%
Line3							
BaseMonth	nonRenewed	Renewed	Midterm_canceled	Total	nonRenewedPer	RenewedPer	Midterm_cancelPer
200501	4,232	25,450	2,523	32,206	13.14%	79.02%	7.83%
200601	4,295	26,676	2,529	33,500	12.82%	79.63%	7.55%
200701	4,433	27,574	2,922	34,930	12.69%	78.94%	8.37%
200801	4,810	28,272	2,878	35,960	13.38%	78.62%	8.00%
200901	4,927	28,536	2,803	36,265	13.59%	78.69%	7.73%

Annual Attritions by Premium Change

Annual Premium change < -x%

BaseMonth	nonRenewed	Renewed	Midterm_canceled	Total	nonRenewedPer	RenewedPer	Midterm_cancelPer
200501	330	2,247	113	2,690	12.27%	83.53%	4.21%
200601	3,657	22,867	880	27,405	13.35%	83.44%	3.21%
200701	4,317	31,587	1,417	37,321	11.57%	84.64%	3.80%
200801	5,103	37,126	1,602	43,831	11.64%	84.70%	3.66%
200901	4,041	24,618	892	29,551	13.67%	83.31%	3.02%

Annual Premium change (-x%, 0%)

BaseMonth	nonRenewed	Renewed	Midterm_canceled	Total	nonRenewedPer	RenewedPer	Midterm_cancelPer
200501	110	1,194	72	1,376	7.99%	86.76%	5.25%
200601	1,514	12,866	676	15,056	10.06%	85.45%	4.49%
200701	2,181	18,409	958	21,548	10.12%	85.43%	4.45%
200801	2,306	18,315	829	21,450	10.75%	85.38%	3.87%
200901	1,348	10,783	493	12,625	10.68%	85.42%	3.91%

Annual Premium change (0%, x%)

BaseMonth	nonRenewed	Renewed	Midterm_canceled	Total	nonRenewedPer	RenewedPer	Midterm_cancelPer
200501	23,656	153,279	11,864	188,800	12.53%	81.19%	6.28%
200601	13,448	85,676	7,538	106,661	12.61%	80.33%	7.07%
200701	12,725	77,042	7,157	96,924	13.13%	79.49%	7.38%
200801	13,844	84,623	9,115	107,582	12.87%	78.66%	8.47%
200901	18,302	109,942	11,085	139,329	13.14%	78.91%	7.96%

Annual Premium change > x%

BaseMonth	nonRenewed	Renewed	Midterm_canceled	Total	nonRenewedPer	RenewedPer	Midterm_cancelPer
200501	474	4,232	478	5,184	9.15%	81.64%	9.21%
200601	6,482	41,619	4,355	52,456	12.36%	79.34%	8.30%
200701	5,533	36,853	3,928	46,313	11.95%	79.57%	8.48%
200801	3,698	25,252	3,723	32,674	11.32%	77.29%	11.40%
200901	3,708	21,809	4,235	29,752	12.46%	73.30%	14.24%

Monthly View

Monthly Snapshot			
	Active	Withdraw	Percent
Endterm	16,939	2,086	12.32%
Others	182,161	1,609	0.88%
Total	199,099	3,695	1.86%

BaseMonth	nonRenewed	Renewed	Midterm Canceled	Total	Mid-term Stayed	nonRenewPer	Midterm_cancelPer
200503	2,086	14,852	1,609	199,099	180,552	12.32%	0.88%
200506	2,089	14,789	1,609	200,793	182,305	12.38%	0.87%
200509	1,750	12,879	1,502	201,314	185,183	11.96%	0.80%
200512	1,565	11,330	1,602	201,192	186,694	12.13%	0.85%
200603	2,228	15,292	1,775	201,657	182,362	12.72%	0.96%
200606	2,083	14,805	1,455	201,820	183,477	12.33%	0.79%
200609	1,797	13,096	1,684	201,698	185,120	12.07%	0.90%
200612	1,584	11,437	1,584	201,145	186,541	12.16%	0.84%
200703	2,284	15,597	1,634	202,562	183,047	12.77%	0.88%
200706	1,910	14,997	1,483	203,966	185,576	11.30%	0.79%
200709	1,725	13,237	1,690	204,830	188,178	11.53%	0.89%
200712	1,615	11,578	1,939	204,858	189,727	12.24%	1.01%
200803	2,174	15,955	1,763	206,118	186,226	11.99%	0.94%
200806	2,055	15,038	1,687	208,880	190,100	12.02%	0.88%
200809	1,895	13,291	1,750	210,140	193,205	12.48%	0.90%
200812	1,568	11,547	2,573	210,703	195,015	11.95%	1.30%
200903	2,328	16,087	2,111	212,861	192,334	12.64%	1.09%
200906	2,313	15,371	1,989	214,614	194,942	13.08%	1.01%
200909	2,168	13,759	1,910	214,595	196,758	13.61%	0.96%
200912	1,847	11,836	2,297	212,302	196,322	13.50%	1.16%

Parameter Estimates Using PHREG

Analysis of Maximum Likelihood Estimates									
		Paramet							
		er	Standard						
			_	Chi-	Pr > Chi				
Parameter	DF	Estimate	Error	Square	Sq				
Line 1	1	0.13191	0.00567	542.0893	<.0001				
Line 2	1	-0.12595	0.00757	276.5103	<.0001				
Line 3	1	-0.0046	0.00733	0.3949	0.5297				
Hardmarket	1	-0.08471	0.00851	99.0705	<.0001				
Softmarket	1	0.17576	0.01246	198.9296	<.0001				
DP	1	0.33539	0.00409	6716.431	<.0001				
GDP	1	-0.03034	0.00303	100.2983	<.0001				
EndtermIn	1	1.33258	0.04393	919.9652	<.0001				
PolicyAge	1	-0.00866	8.13E-05	11322.18	<.0001				
EndtermDp	1	-0.3067	0.01017	908.8036	<.0001				

There are about 20 variables plus several interaction terms in the models. Only selected variables are reported.

Parameter Estimates Using Logistic

Analysis of Maximum Likelihood Estimates									
			Standard –	Wald Chi-	Pr > Chi				
Parameter	DF	Estimate	Error	Square	Sq				
Intercept	1	-1.6028	0.0804	397.1769	<.0001				
Line 1	1	0.0816	0.0145	31.513	<.0001				
Line 2	1	-0.1732	0.0143	146.9164	<.0001				
Line 3	1	-0.0539	0.0164	10.7724	0.001				
Softmarket	1	0.1281	0.0267	22.9947	<.0001				
DP	1	0.4227	0.0118	1290.378	<.0001				
GDP	1	-0.0311	0.00486	40.8976	<.0001				
PolicyAge	1	-0.00717	0.000094	5866.395	<.0001				

Survival Curve for Policy Age

Survival Curve for GDP Change (Percent)

Survival Curve for Market Condition

Conclusions

Survival analysis addresses not only whether a policy will leave, but also when it will leave.

Provide a dynamic insight by utilizing panel data and improve the static view derived from snapshot data.

>Analyze mid-term cancellation and end-term nonrenewal sequentially and simultaneously.

≻Able to measure the impacts of time-variant macroeconomic variables on attrition.

