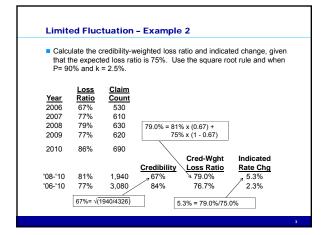
Limited Fluctuation - Example

- Calculate the expected loss ratio, given that the prior estimated loss ratio is 75%. Assume P=95% and k=10%.
- Scenario 1:
- Data: Observed loss ratio = 67%, Claim count = 600 - What is the standard for full credibility?
 - Does this data have full credibility?
 - What is the expected loss ratio?
- Answer:
 - For P=95% and k=10%, the number of claims needed is 584. Since we have 600, the data is considered fully credible.

Limited Fluctuation - Example (continued)


 Calculate the loss ratio, given that the prior estimated loss ratio is 75%. Assume P=95% and k=10%.

Scenario 2:

Data: Observed loss ratio = 67%, Claim count = 400 - Assuming Z = 0.72, what is the expected loss ratio?

Answer:

E2 = **Z*****T** + (**1**-**Z**)***E1 E2** = 0.72 x 67% + (1 - 0.72) x 75% **E2** = 69.2%

Limited Fluctuation - Example 3

Given a current territory factor of 1.08, determine the indicated territory
factor with 5 years of data. Use the square root rule and the limited
fluctuation formula for pure premium. Assume a Poisson frequency
distribution and severity coefficient of variation of 1.5.

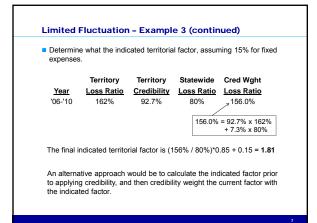
Year	Territory Exposure	Territory <u>Claim Count</u>	Territory Loss Ratio	Statewide Loss Ratio
2006	3,000	330	125%	78%
2007	3,020	420	153%	83%
2008	3,030	630	269%	85%
2009	3,020	210	122%	79%
2010	3,050	190	108%	72%
'06-'10	15,120	1,780	162%	80%

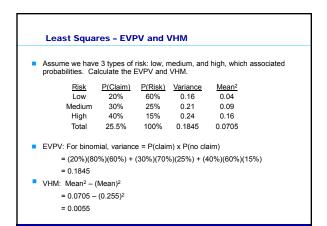
.

Limited Fluctuation - Example 3 (continued)

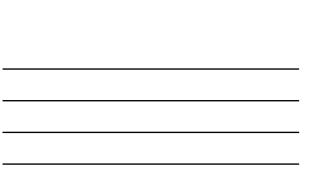
 $N = (z_p / k)^2 * (Var(N)/E(N) + Var(S)/E(S)^2)$

- Remember, with a Poisson distribution, Var(N) = E(N), so the second term is 1. The third term is the square of the coefficient of variation, which is 1.5². Now we just need to select the confidence levels.
- If we want to be within 5% of the true value 90% of the time, the value for $(z_p \ / \ k)^2$ is 1,082. Plugging into the formula:


 $N_{claims} = 1,082 * (1 + 1.5^2) = 3,516.5$


Assuming the 5-year statewide frequency is 0.2:

N_{exposures} = 3,516.5 / 0.2 = 17,582.5


claims sta		r selection of an e	exposure stand	ard instead
	Territory	Territory	Exposure	Claim
Year	Exposure	Claim Count	Credibility	Credibility
2006	3,000	330	41.3%	30.6%
2007	3,020	420	41.4%	34.6%
2008	3,030	630	41.5%	42.3%
2009	3,020	210	41.4%	24.4%
2010	3,050	190	41.6%	23.2%
'06-'10	15,120	1,780	92.7%	71.1%

Least Squares – Example						
Assuming that you have the following book of business, calculate the EVPV, VHM, K, and Z. The prior estimate of the frequency is 0.517. With 4 years of observations and an observed frequency of 0.75, what is the estimated future frequency? Assume the claims are binomially distributed.						
	Risk	P(Claim)	P(Risk)	Variance	Mean ²	
	Low	40%	65%	0.24	0.16	
	Medium	70%	23%	0.21	0.49	
	High	80%	12%	0.16	0.64	
	Total	51.7%	100%	0.2235	0.2935	
EVPV: For binomial, variance = P(claim) x P(no claim)						
= (40%)(60%)(65%) + (70%)(30%)(23%) + (80%)(20%)(12%)						
= 0.2235						
VHM: Mean ² – (Mean) ²						
$= 0.2935 - (0.517)^2$						
=	0.0262					
						9

Least Squares - Example (continued)

- To determine K, we use K = EVPV/VHM, which is K = 0.2235 / 0.0262 = 8.53
- Since we're told that we have 4 years of observations, n = 4. Therefore, $Z=n\,/\,(n+K) \rightarrow 4\,/\,(4+8.53)=0.319.$
- The prior estimate of frequency is the same as the mean calculated before, 0.517, and the observed data results in a frequency of 0.75. This observed data as 31.9% credibility, so...

E2 = Z * T + (1 - Z) * E1 \rightarrow 31.9% * 0.75 + 68.1% * 0.517 = 0.5913