

Development of an Overall Indication
Jennifer Jabben, FCAS, MAAA
Assistant Actuary
Allstate Insurance Company
Jennifer.Jabben@Allstate.com
March 20, 2011
New Orleans, LA
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ANTITRUST NOTICE

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the
expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding - expressed or implied - that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to
violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.
\qquad

BASIC METHODS

\qquad

LOSS RATIO
PURE PREMIUM \qquad

- Produces Indicated Rate Change
- Produces Indicated Rates
- Based on Premium

Based on Exposures

- Requires Existing Rates - Does Not Require Existing Rates \qquad
\qquad

Note: The two methods produce identical results when identical data and assumptions are used.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
BASIC FORMULA:
Loss Ratio
Indicated Change $=\frac{\text { Loss Ratio + Fixed Expense Ratio }}{\text { Variable Permissible Loss Ratio }}$
$\left(\mathrm{R}_{1}-\mathrm{R}_{0}\right) / \mathrm{R}_{0}=\frac{\left(\mathrm{L} / \mathrm{R}_{0}+\mathrm{E}_{\mathrm{E}} / \underline{R}_{0}\right)}{(1-\mathrm{V}-\mathrm{Q})}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BASIC FORMULA:
Pure Premium
Indicated Rate $=$
$\frac{\text { Pure Premium }+ \text { Fixed Expense }}{\text { Variable Permissible Loss Ratio }}$

$\mathrm{R}_{1} / \mathrm{X}=\frac{\left(\mathrm{L} / \mathrm{X}+\mathrm{E}_{\underline{\underline{E}}} / \mathrm{X}\right)}{(1-\mathrm{V}-\mathrm{Q})}$

DATA CATEGORIZATION

\qquad

- CALENDAR YEAR
- POLICY YEAR
- ACCIDENT YEAR

CALENDAR YEAR

\qquad

Premium and Loss transactions that occur during the \qquad year.

- Advantages:
- Data is available quickly
- FIXED AT YEAR END
- Consistent with Financial Statements
- Disadvantage:
- Premium and Loss Transactions DO NOT match.

Loss data includes payments and changes to reserves for policies whose premiums were earned in prior periods.

POLICY YEAR

Premium and Loss transactions on policies with effective dates (new or renewal) during the year.

- Advantages:
- Premium and Loss transactions DO match.

Transactions from policies effective in prior years do not distort the data for ratemaking

- Disadvantage:
- Data is not available until one term after the end of the policy year. - Losses are NOT fixed at year end.
\qquad

TREND

Historical loss, premium and exposure data is \qquad trended to reflect the level predicted to exist during the pricing period. \qquad

- to account for expected difference between the historical period and the future period. \qquad
\qquad
\qquad

CATASTROPHE/Large Loss

- Catastrophe losses are very volatile from year to year, \qquad and should be removed from the underlying data because of their large size and infrequency of occurrence.
- Recognition of exposure is appropriate and can be incorporated using various methods.
- Long-Term Average, Catastrophe Simulation Modeling.
- Appropriate to give consideration to the impact of other non-catastrophe large losses on underlying data and analysis.

LOSS DEVELOPMENT

Adjustment made to underlying accident year loss data to reflect an expected ultimate value.

- 2 reasons for Accident Year losses to develop
- New Losses emerge after year-end (IBNR)
- Development on known claims
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

LOSS DEVELOPMENT FACTOR (LDF) METHOD

Incurred Losses			
ACCIDENT YEAR $@ 12 \mathrm{mo}$ $@ 24 \mathrm{mo}$ $@ 36 \mathrm{mo}$ 2008 $\$ 1,000$ $\$ 2,000$ $\$ 2,500$ 2009 $\$ 2,000$ $\$ 3,000$ 2010 $\$ 2,500$ X?			

Loss Development Factors

ACCIDENT YEAR	$12-24$	$24-36$
2008	2.00	1.25
2009	1.50	
LDF	1.75	1.25

Estimated Ultimate 2010 AY Loss $=\$ 2,500 \times 1.75 \times 1.25=\$ 5,469$

CURRENT RATE LEVEL

- Adjustment to reflect rate changes that are not already included in the historical recorded premium.
- Common Techniques:
- Extension of Exposures
- Parallelogram Method

PROFIT \& CONTINGENCY

\qquad

- UNDERWRITING PROFIT PROVISION \qquad
- Basic Selection = 5\%
- More Complex Calculation
- Consideration of Investment Income
- CONTINGENCY \qquad
- Provision for expected differences, if any, between the estimated costs and the average actual costs, that cannot be eliminated by changes in the other components of the ratemaking process.

? QUESTIONS ?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

