| Workers Comp Claims Predictive Modeling - |
| :--- |
| How to Reduce Medical Costs |
| CAS Ratemaking and Product Management |
| Seminar |
| Steve DiCenso, FCAS, MAAA <br> Consulting Actuary, Milliman |
| March 19-21, 2012 |
|  |

## OUTLINE

- Background
- Conceptual Framework
- Product Description(s) and Examples
- Project Overview
- Predictive Model
- Approach
- Data and Modeling Technique
- Results of the Model
- Practical Applications and Recommendations


## Background and Conceptual Framework

- Client spends approximately $\$ 100$ million in annual WC premium
- Average WC medical cost per claim (severity) increasing by approximately $8 \%$ to $9 \%$ per annum
- Claim frequencies starting to increase
- In-house self-administered Property/Casualty claims unit
- Complex claim-related situations (injury, job, medical, demographic, socio-economic, etc.)
- Limited claims adjuster resources
- Lots of claims and medical data - need to leverage its use


## Insurer's New Predictive Model Targets High Cost Workers' Comp Claims

- Workers' compensation giant Liberty Mutual has developed a new predictive model that lets it more quickly identify and manage high cost workers' compensation claims that typically make up about 20 percent of all workers' compensation claims.
- The new model is designed to help Liberty's claims professionals identify claims that are potentially going to cost a lot and then bring the right resources to one of these claims at the right time. The company should then be able to close these claims faster, thereby lowering overall claim costs.
- The predictive model will be used to look at claims monthly and pick up changes in each claim's profile that can negatively impact that claim's development, such as emerging medical and non-medical factors.


## Conceptual Framework

- Develop a predictive model that identifies cost drivers not readily apparent to adjusters
- A supplement to existing claims administration process
- Help lower workers compensation costs by:
- Triaging claims earlier and more effectively by identifying claims likely to turn into high-cost claims
- Predicting cost drivers of claims
- Intervening with improved medical management to prevent losses from developing adversely


## Product Description(s) and Examples

- Reporting tool
- Predictive models
- Ranking of predictive variables
- Marginal \$ impact
- Risk driver reports
- Claim/medical management business rules


## Project Overview

- Step 1
- Prepare and Review Data
- Create Population-Level Medical Metrics
- Summarize Findings at Population Level
- Step 2
- Develop Claims Predictive Models
- Step 3
- Create Customized Risk Driver Reports
- Conduct Claims Workshop
- Step 4
- Assist with Claims Operational/Process Impact
- High-Level Model Vision and Implementation Plan


## Data

- Utilized all WC lost-time (LT) claims (over 20,000 ) and 8 years of medical bills/lines (millions)
- Merged claim file and medical data (two vendors' data sets)
- Other data challenges

Accident

- Collapsed medical data (CPT, ICD9, NDC) into meaningful groups



## Step 1 - High-Level Review of Findings

- Older claims (not new reports) drive medical severity trend
- Price of medical services a bigger driver than utilization
- Hospital services are highest
- High-potency narcotic analgesics account for $2 \%$ of bills but $10 \%$ of costs
- In-network severities higher than out-of-network
- Slip/fall claims show the highest per claim severity trends
- Payments on older claims for older workers (>= age 55) trending over 10\%

|  | Milliman |
| :---: | :---: |



## Step 2 - Modeling Technique

- Organize medical data using algorithms from Milliman's Health discipline
- Models developed on closed claims and applied to open claims
- Models created at various points in the early life of a claim
- Considered multi-dimensional characteristics (e.g., older female, back strain, multiple procedures)
- Used multi-variate linear and non-linear regression models, and selected the best fit model
- Balanced relative simplicity of model with need to control influence of multiple factors (e.g., demographic, socio-economic, medical, accident) to predict outcomes


## Step 2 - Modeling Approach - Stratify and Identify

- Predict outstanding medical cost (dependent variable) at the claim level early in the life of the claim by age cohort
- Day $1,30,60,90,120,180$, and 360 days after reported injury
- Key process - collapse diagnosis, procedure and drug (if available) codes into meaningful groups
- Identify drivers of future medical cost
- Identify non-obvious (and obvious) cost drivers
- Validate the findings from Step 1 (one-way data analyses)
- Distinguish unit price vs. utilization components of cost



## Step 3 Findings - Sample Risk Driver Report

- Snapshot of claimant and medical risk characteristics
- Run on 1,800+ open claims with medical data transactions as of January 1, 2011
- Categories
- Claim characteristics
- Medical conditions
- Medical utilization
- Prescription drug classes
- Used for conducting sample claims workshop with multidisciplined team of experts
- Compared model predictions vs. actual results in hindsight


| Sample Risk Driver Report (p. 2) |  |  |  |
| :---: | :---: | :---: | :---: |
| Risk Driver Category | Incremental Cost | Data Element | Estimated <br> Future <br> Costs |
| Claimant Characteristics |  |  |  |
| Sprain/Strains of the Back | \$2,358 | Category $=$ Yes | \$2,358 |
| Medical Conditions |  |  |  |
| Musculoskeletal and Connective Tissue | \$447 | 6 Diagnoses | \$2,682 |
| Medical Utilization |  |  |  |
| Office Visits | \$101 | 34 Counts | \$3,434 |
| Medical Paid to Date | 20.5\% | \$4.631 Prior Paid | \$949 |
| Subtotal |  |  | \$4,383 |
| Prescription Drug Classes |  |  |  |
| Neurological Agents | \$3,688 | 3 Counts | \$11,064 |
| Number of Prescriptions | \$576 | 1 Count | \$576 |
| Subtotal |  |  | \$11,640 |
| All Other |  |  | \$4,036 |
| Grand Total |  |  | \$25,099 |
| 16 |  |  | Millim |

## Step 4 Recommendations

- Improve data collection and compilation process at first report of injury
- Perform annual update of predictive model
- Produce quarterly risk driver reports on open claims
- Develop business rules for:
- Frequency of contact/follow-up by adjuster
- Assignment to claims adjuster level, special claims teams, nurse case manager, physician, special investigative unit, etc.
- Store results and integrate within data warehouse reporting tool


## Other Potential Practical Applications

- Compensability of medical only claims
- Claim fraud detection
- Claims process reviews/file audits
- Integration with actuarial analysis
- Medical management efforts
- Reporting/performance assessment process
- Objectively evaluate provider, network, etc. performance

