Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws.
 Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Fueling Innovation From Raw Data

Rama Duvvuri, FCAS CPCU Vice President – Analytics ISO Innovative Analytics

March 2012

THE SCIENCE OF RISKSM

2

Agenda

• Data

- -Value, opportunities, and challenges
- Speed to market?
 - -Analytic objects (components) to the rescue
- Examples of Raw Data
 - -Business locations data in personal auto
 - -Weather data in homeowners peril-level modeling
 - Economic growth data in premium audit modeling

THE SCIENCE OF RISKSM

Driving Business Value with Analytics

Data: Opportunities and Challenges

Opportunities

- Increasing diversity and volume of useful data
 - Free and fee-based
- Ability to store large data sets
 - Decreasing costs of storage
- Computing capabilities to manipulate large data sets
 - Ever-increasing compute power

Challenges

- Complex data structures
- Sheer volume
- Multitude of variables
 - Significant preprocessing
- Data management
 - Storage and refresh
- Raw data is rarely useful
 - Need right techniques and tools to extract value

Considerable value but speed to market remains a concern

Problem – Geographic Risk Estimation

The Data: Business Points

- From a business data vendor (fee-based)
 - -13 million businesses
 - -Latitude/longitude
 - -108 distinct SIC codes
 - Identify "traffic generators"
 - -Businesses that produce traffic in their vicinity
 - e.g., malls/shopping centers, transportation hubs, etc.

Examples of Traffic Generators

Traffic Generators and Auto Losses

- Distribution of businesses (traffic generators) are different at these two garaging locations
- Is there a correlation between these traffic generators and auto losses?

Deriving Useful Features

÷.,	Count of	Count of			Count of	Count of
÷.	Grocery	Grocery	Count of	Count of	Eating	Eating
÷.	Stores	Stores	Hospitals	Hospitals	Places	Places
_	within .50	within 5	within .50	within 5	within .50	within 5
	miles	miles	miles	miles	miles	miles
	1	48	0	1	9	240
	0	174	0	9	10	970

Numerous "calculated" dimensions

- Distance to nearest business of a certain type
- Number of businesses of a type within a radius "R"
 - R = 0.25, 0.5, 1, 2, 5, 10, etc.
- Density estimates
 - Per capita variables, etc.

THE SCIENCE OF **RISK**SM Area coverage – ½ mile radius = < 1 square mile; 5 mile radius ~ 80 square miles

Traffic Generators Are Correlated

Correlation	is among	Traffic (Generato	ors at $\frac{1}{2}$ N	Лile	

-		Grocery 1/2	Correlations among Traffic Generators at 5 Miles					
		Mile						Eating
1	Grocery 1/2 Mile	1		Grocery 5 Miles	School 5 Miles	Warehouse 5 Miles	Hospital 5 Miles	Places 5 Miles
	School 1/2 Mile	0.658	Grocery 5 Miles	1				
	Warehouse 1/2 Mile	0.564	School 5 Miles	0.969	1			
	Hospital 1/2 Mile	0.338	Warehouse 5 Miles	0.958	0.960	1		
	Eating Places 1/2 Mile	0.814	Hospital 5 Miles	0.871	0.859	0.879	1	
			Eating Places 5 Miles	0.984	0.954	0.967	0.913	1

- At ½ mile the traffic generators are moderately correlated
- At 5 miles the traffic generators are very highly correlated
- Selecting from highly correlated variables is problematic

Collision Frequency Model

- Collision frequency as a function of traffic generators darker shades represent higher collision frequencies
- This model uses a complex set of traffic generators at various distances

Components as Predictors

Personal Auto Environment Model:

Components and Examples

Weather/Terrain:

- Measures of snowfall
- Measures of rainfall
- Measures of temperature
- Elevation changes

Traffic Density and Driving Patterns:

- Commute patterns
- Public transportation usage
- Daytime occupancy
- Speed limits
- Traffic loads

• Traffic Composition:

- Demographic groups e.g.
 - Household size, home ownership
- Age distribution
- Housing occupancy

Traffic Generators:

- Transportation hubs
- Shopping centers
- Hospitals/medical centers
- Entertainment districts

• Experience and Trend:

- ISO loss cost
- State frequency/severity trends

THE SCIENCE OF RISK SM

Increased Segmentation and Value

Model	Gini Index	Value of Lift
Current Territories	8.37%	-
Environmental Module -Base Industry Model	9.49%	\$2.75
Insurer Custom Model Using Components	10.31%	\$6.98

• Modeling using components doubled incremental lift over current territories

Weather Data

Homeowners Peril-Level Risk Estimation

The Data: NARR Weather Data

- North American Regional Reanalysis (NARR)
 - "Best/most accurate North American weather and climate data set"
- Data Range 1979–2007
- Granularity 32 x 32 km grid
- 8 daily readings (every 3 hours) raw data
 - Accumulated precipitation
 - Air temperature
 - Rain
 - Wind
 - Relative humidity
 - Snow depth
 - etc.
- Data size ~ 150 GB

THE SCIENCE OF RISKSM

Derive Potentially Useful Features

• Temperature

- Mean
- Maximum deviation from mean
- Daily range = Daily max Daily min
- Number of consecutive days below freezing, etc.
- Wind
 - Number of days with high wind, etc.
- Precipitation
 - Number of days with severe precipitation
 - Number of days without precipitation, etc.
- Interactions
 - Days without precipitation, high temperature, and high wind, etc.

Explore Higher-Order Moments

Explore Interactions: Use Visualization

Product of - % of days with high < 32 and % of days with low > 72

Positive coefficient in wind frequency model – Why?

Т

Validate Findings Where Possible

Homeowners Environment Model:

Components and Examples

Weather / Elevation:

- Elevation
- Measures of precipitation
- Measures of humidity
- Measures of temperature
- Measures of wind
- Proximity :
 - Commuting patterns
 - Population density
 - PPC

• Trend / Experience:

- Peril's proportion of ISO Loss Cost
- Trend
- Amount of insurance
- Commercial and Geographic Features:
 - Distance to coast
 - Distance to major body of water
 - Local concentration of types of businesses (e.g., shopping centers)

THE SCIENCE OF RISKSM

Economic Data

Problem: Identifying Policies to Audit

Diverse Data Sources Add Value

- Federal Reserve
 - -Interest rates and money supply
 - Bureau of Labor Statistics (BLS)
 - Unemployment statistics
 - Injury, illnesses, and fatalities (IIF)
 - Wages and occupations
 - Bureau of Economic Analysis (BEA)
 - Various measures of economic output (GDP)
 - Area demographics
 - Census

Example – Current Employment Survey

Monthly BLS survey

- Approximately 140,000 businesses and government agencies representing approximately 410,000 worksites
 - Provides employment, paid hours, and earnings information on a national basis
 - More than 1,100 industries at various levels of aggregation
 - 290 series of seasonally adjusted data
 - 550 special derivative series, such as indexes
- Thousands of features created
 - Ratios, indexes, change over time, change over geography, etc.

THE SCIENCE OF RISK SM

Identify Hot Sectors Early

Employment growth varies by industry during the economic cycle

Source: US Bureau of Labor Statistics

THE SCIENCE OF KISP

Identify Geographic Effects

THE SCIENCE OF RISKSM

Source: US Bureau of Labor Statistics

Wage Growth by Occupation

Wage growth also varies, adding additional insights

12 Month Change in Compensation - June 2011

THE SCIENCE OF RISK

Source: US Bureau of Labor Statistics

Economic Component

Audit Selection Model Architecture

Summary

- Better business decisions are the key to success
 - Analytics can shape decisions, but requires good data
- Raw data is often not very useful
 - Takes time, talent, and tools to extract valuable information from data
- Using packaged *analytic objects* can help fuel innovations quickly and cost-effectively

Questions?

Rama Duvvuri, FCAS CPCU Vice President - Analytics ISO Innovative Analytics rduvvuri@iso.com

THE SCIENCE OF RISK SM