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Have you ever… 

• …needed to build a realistic model with not enough data? 
• …wanted to keep in your model highly correlated variables that capture 

different characteristics? 
• …had highly correlated variables that made your model unstable? (Was 

it easy to find the source of the problem? ) 
• …had hundreds or thousands of highly redundant predictors to 

consider? 
• …felt you had too little time to build a model? 
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You came to the right place! 



towerswatson.com 

Agenda 

• The variable selection problem  
• Classic variable selection tools 
• Challenges 

• Introduction to penalized regression  
• Ridge regression  
• LASSO  
• Elastic Net 

• Extension to GLM  
• Appendix 

• Close relatives to LASSO and Elastic Net 
• Bayesian interpretation of penalized regression 
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Goals of predictive modeling  

• The goal is to build a model that ensures accurate prediction on future 
data 

• How:  
• Choose the correct model structure 
• Choose variables that are predictive  
• Obtain the coefficients  

• Many techniques:  
• Linear regression  
• GLM 
• Survival analysis – Cox’s partial likelihood 
• …and many more! 

• Variable selection:  
• Recover the true non-zero variables 
• Estimate coefficients close to their true value  
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Classic variable selection tools: Exhaustive methods 

• Brute-force search 
• For each 𝑘 ∈ 1,2, … ,𝑝 , find the subset of “best” variables of size k 

• For example: the smallest residual sum of squares (RSS) 
• Choosing 𝑘 can be done using: 

• AIC  
• Cross-validation  

• Do not need to examine all possible subsets  
• “Leaps and bounds” techniques by Furnival and Wilson (1974) 

• Never practical for even small number of variables or small datasets 
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Classic variable selection tools : Greedy algorithms 

• More constrained than exhaustive methods 
• Forward stepwise selection 

•  Starts with the intercept and then sequentially adds into the model the 
predictor that most improves the fit 

• Backward stepwise selection  
• Starts with the full model and sequentially deletes the predictor that has the 

least impact on the fit 
• Hybrid stepwise selection  

• Considers both forward and backward moves 
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Challenges 

• Discrete process — variables are either retained or discarded but 
nothing in between 

• Issues:  
• Unstable  small changes in the data produce changes in the chosen 

variables 
• Models built this way usually exhibit low prediction accuracy on future data 
• Computationally prohibitive when the number of predictors is large 
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Challenges 

• Severely limits the number of variables to include in a model, especially 
for models built on small datasets  
• Certain lines of business  

• Boat, motorcycle, GL 
• Certain type of models 

• Fraud models, retention models  

• Problems 
• Over-fitting 
• Under-fitting 
• …and don’t forget multicollinearity 

• Many regularization techniques provide a “more democratic” and 
smoother version of variable selection 
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Quick review of linear models 

• Target variable (𝑦) 
• Profitability (pure premium, loss ratio) 
• Retention 
• Fraudulent claims 

• Predictive variables {𝑥1,𝑥2, … , 𝑥𝑝} 
• “Covariates” – used to make predictions 
• Policy age, credit, vehicle type, etc.  

• Model structure  
 𝑦 = 𝛼 + 𝛽1 ∙ 𝑥1 +⋯+ 𝛽𝑝 ∙ 𝑥𝑝 

• Solution is given by 

𝜷�𝑶𝑶𝑶 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2𝑁

𝑖=1
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Penalization  methods 

• Generally, a penalized problem can be described as: 

𝜷�𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2

+
𝑁

𝑖=1

𝜆 ⋅ 𝐽 𝛽1, … ,𝛽𝑝  

𝐽 ⋯  is a positive penalty for 𝛽1, … , 𝛽𝑝  not equal to zero 
• Unlike subset selection methods, penalization methods are: 

• More continuous 
• Somewhat shielded from high variability 

• All methods shrink coefficients toward zero 
• Some methods also do variable selection 
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The classic bias-variance trade-off 

• Penalized regression produces estimates of coefficients that are biased 
• The common dilemma:  reduction in variance at the price of increased 

bias 
MSE = Var(�̂�) + Bias(�̂�)² 
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• If bias is a concern, use penalized 

regression to choose variables and 
then fit unpenalized model 

• Use cross validation to see which 
method works better   
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Penalization  methods 

𝜷�𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2

+
𝑁

𝑖=1

𝜆 ⋅ 𝐽 𝛽1, … ,𝛽𝑝  

• Different methods use different penalty functions: 
• Ridge Regression : 𝐿2 
• LASSO : 𝐿1 
• Elastic Net : combination of 𝐿1 and 𝐿2 

• To use penalized regression, data needs to be normalized:  
• Center 𝑦 around zero 
• Center each 𝑥𝑖  around zero and standardized to have SD = 1 
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Ridge regression  

• Ridge regression uses 𝐿2 penalty function, i.e. “sum of squares” 

𝜷�𝑹𝑹𝑹𝑹𝑹 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2

+
𝑁

𝑖=1

𝜆 ⋅�𝛽𝑗2
𝑝

𝑗=1

 

• Used to penalize large parameters 
• 𝜆 is a tuning parameter; for every 𝜆 there is a solution  
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Ridge regression  

• Equivalent way to write the ridge problem:  
  

𝜷�𝑹𝑹𝑹𝑹𝑹 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2𝑁

𝑖=1

 

subject to 

�𝛽𝑗2 ≤ 𝑡
𝑝

𝑗=1

 

• Ridge regression shrinks parameters, but 
never forces any to be zero 
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Unconstrained  
OLS solution 

Ridge solution 

Sphere of radius 𝑡  
constraining 
domain for the 
ridge solution 
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Ridge regression example using R 

• Simulated data with 10 
variables and 500 
observations 

• True model:  

𝑦 = 4 ∙ 𝑥1 + 3 ∙ x2 + 2 ∙ x3
+ 𝑥4 

• Fit using package (MASS) 
in R  
• lm.ridge 
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How to choose the tuning parameter λ? 

• Use cross validation 
• How it works:  

• Randomly divide data into 𝑁 equal pieces 
 

 
 
• For each piece, estimate model from the other N-1 pieces 
• Test the model fit (e.g., sum of squared errors) on the remaining piece 
• Add up the N sum of square errors 
• Plot the sum vs. λ 

• Recommendation:  If possible, use separate years of data as the folds 
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Training Testing Training Training Training 
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How to choose the tuning parameter λ? 
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Simple example: Ridge regression − multicollinearity 

• Ridge regression controls well for multicollinearity 
• Deals well with high correlations among predictors 

• Simple example:  
• True model  

𝑦 =  2 +  𝑥1                     
• Assume 𝑥2 is another variable such that 𝑥2 =  𝑥1 
• Notice that 𝑦 =  2 +  𝛽1 ∙  𝑥1 +  (1 − 𝛽1) ∙  𝑥2  should be an equivalent linear 

model  
• Ridge regression tries to fit the data so that it will minimize 𝛽1

2 +  𝛽2
2  

• Ridge solution tries to split the coefficients as equally as possible between the 
two variables 

𝑦 =  2 +  ½ 𝑥1 +  ½ 𝑥2 
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Ridge regression summary 

• Uses 𝐿2 penalty function  
• Shrinks all coefficients, but does not force any to be zero 
• Deals well with correlation between variables 
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LASSO 

• LASSO = Least Absolute Shrinkage and Selecting Operator 
• Introduced by Tibshirani in 1996 
• Uses 𝐿1 penalty function, i.e. sum of absolute values  

𝜷�𝑶𝑳𝑶𝑶𝐎 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2

+
𝑁

𝑖=1

𝜆 ⋅� 𝛽𝑗

𝑝

𝑗=1

 

• As usual, data needs to be normalized 
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LASSO 

• Equivalent way to write the LASSO problem:
   

𝜷�𝑶𝑳𝑶𝑶𝑶 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2𝑁

𝑖=1

 

subject to 

� 𝛽𝑗  ≤ 𝑡
𝑝

𝑗=1

 

• For every t, there is a unique solution 
• 𝑡 →  0 : constant model  
• 𝑡 → ∞: OLS model 

 

21 

Unconstrained  
OLS solution 

LASSO solution 

Cube of size 𝑡  
constraining 
domain for the 
LASSO solution 
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LASSO 

• Example of LASSO domain in three dimensions 
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LASSO example using R 

• Simulated dataset with 10 
variables and 500 
observations  

• 𝐶𝐶𝐶𝐶 𝑥𝑖 , 𝑥𝑗 = 0.5 
• True model:  
𝑦 =  4 ∙ 𝑥1 +  3 ∙ 𝑥2 +  2 ∙ 𝑥3 

+  𝑥4  

• Fit using package 
“elasticnet” in R 
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LASSO example 2 using R  

• Fitting LASSO curve for linear models 
is extremely fast  

• This example used 100k of simulated 
data and 100 variables 
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LASSO sequence 
Computing X'X ..... 
LARS Step 1 :    Variable 37    added 
LARS Step 2 :    Variable 12    added 
LARS Step 3 :    Variable 49    added 
LARS Step 4 :    Variable 82    added 
LARS Step 5 :    Variable 42    added 
LARS Step 6 :    Variable 19    added 
LARS Step 7 :    Variable 1     added 
LARS Step 8 :    Variable 7     added 
LARS Step 9 :    Variable 89    added 
LARS Step 10 :   Variable 22    added 
LARS Step 11 :   Variable 4     added 
LARS Step 12 :   Variable 50    added 
LARS Step 13 :   Variable 23    added 
LARS Step 14 :   Variable 65    added 
LARS Step 15 :   Variable 72    added 
LARS Step 16 :   Variable 60    added 
LARS Step 17 :   Variable 44    added 
LARS Step 18 :   Variable 94    added 
LARS Step 19 :   Variable 61    added 
LARS Step 20 :   Variable 55    added 
LARS Step 21 :   Variable 48    added 
LARS Step 22 :   Variable 79    added 
LARS Step 23 :   Variable 70    added 
LARS Step 24 :   Variable 81    added 
LARS Step 25 :   Variable 97    added 
LARS Step 26 :   Variable 17    added 
....... 
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Simple illustration : Orthonormal design matrix 

• Expressions on this slide only hold 
when 𝑋𝑇𝑋 =  𝐼, i.e. the design matrix 
is orthonormal   

• Subset selection of size k:  
• Choose k largest coefficients in the 

absolute values and set the rest to zero 
𝛽𝑗� 𝑆𝑆 =  𝛽𝑗𝑂𝑂𝑆     𝑖𝑖𝑖    |𝛽𝑗� 𝑂𝑂𝑆|  >  𝜆 

 
• Ridge regression:  

• Shrink all coefficients by a factor 
𝛽𝑗� 𝑅𝑖𝑅𝑅𝑅 =

1
1 + 𝜉 𝛽𝑗

� 𝑂𝑂𝑆   

 
• LASSO: 

• Translate and truncate 
 𝛽𝑗� 𝑂𝐿𝑆𝑆𝑂  = sign(𝛽𝑗� 𝑂𝑂𝑆)∙  𝛽𝑗� 𝑂𝑂𝑆 − 𝜂 + 25 
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LASSO summary 

• Uses 𝐿1 penalty function  
• Sets some coefficients to zero and shrinks the rest of the coefficients  
• If high correlations among predictors exist, the performance of the 

LASSO is dominated by Ridge regression (Tibshirani, 1996)  
• If there is a group of variables among which the pairwise correlations 

are very high, then the LASSO tends to select only one variable from the 
group and does not care which one is selected. 
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Is there a compromise between Ridge regression and LASSO? 
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First attempt to compromise between Ridge and LASSO 

• Use 𝐿𝑞 penalty function for 1 < 𝑞 < 2 

𝜷�𝑶𝒒 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2𝑁

𝑖=1

 

subject to 

� 𝛽𝑗 𝑞 ≤ 𝑡
𝑝

𝑗=1
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“Naive” Elastic Net 

• Introduced by Zou and Hastie (2005) with a sum of 𝐿1 and 𝐿2 penalty 
function 

𝜷�𝑵𝑵𝑹𝑵𝑹 𝑬𝑵𝑹𝑬 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2

+
𝑁

𝑖=1

𝜆1 ⋅� 𝛽𝑗

𝑝

𝑗=1

+ 𝜆2 ∙ �𝛽𝑗2
𝑝

𝑗=1

 

• The linear term (𝐿1) of the penalty forces certain variables to be zero 

• The quadratic term (𝐿2) of the penalty:  
• Decreases the limitation on the number of selected variables 
• Encourages grouping effect 
• Stabilizes the 𝐿1 regularization path and hence improves the prediction 
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“Naive” Elastic Net 

• Equivalent way to write the Elastic Net 
problem:   

𝜷�𝑵𝑵𝑹𝑵𝑹 𝐄𝐄𝐏𝐄 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2𝑁

𝑖=1

 

subject to 

(1 − 𝛼) ∙� 𝛽𝑗 +  𝛼 ∙�𝛽𝑗2
𝑝

𝑗=1

≤ 𝑡
𝑝

𝑗=1

 

• Strict convexity guarantees the grouping 
effect even in the extreme situation of 
identical predictors 
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Singularities at 
the vertexes 
results in a sparse 
ENet solution  
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Deficiencies of naive Elastic Net 

• While it overcomes the limitations of LASSO and Ridge regression, it 
does not perform satisfactorily unless it is close to Ridge or LASSO 

• Naive Elastic Net is two stage-procedure:  
• Step 1: For each fixed 𝜆2, first find the ridge regression coefficients 
• Step 2: Do the LASSO type shrinkage along the LASSO solution path   

• This amounts to incurring double shrinkage, which does not help to 
reduce the variance and introduces extra bias 
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Moving from naiveté 

• Elastic Net scales the naive Elastic Net parameters 

𝜷�𝑬𝑵𝑹𝑬 = 1 +  𝜆2 ∙ 𝜷�𝑵𝑵𝑹𝑵𝑹 𝑬𝑵𝑹𝑬 

• Elastic Net: 
• Does automatic variable selection 
• Does continuous shrinkage 
• Handles multicollinearity 

• Similar to the previous example, when 𝑥1 = 𝑥2; Elastic Net will include 
both variables  

• Could include all the variables desired in the initial model without 
worrying about multicollinearity or near-aliasing 
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Similar to a fishing net, Elastic Net retains only all the “big fish” 
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A simple illustration*: Elastic Net vs. LASSO 

• Two independent “hidden” variables:  𝑧1 and 𝑧2 

   𝑧1 ~ 𝑈 0,20      𝑎𝑎𝑎      𝑧2 ~ 𝑈(0,20) 

• Generate the response vector:  𝑦 =  𝑧1 +  0.1 𝑧2 +  𝑁(0,1) 
• Suppose that the only predicators observed are: 

𝑥1 =  𝑧1 + 𝜖1,  𝑥2 =  −𝑧1 + 𝜖2,  𝑥3 =  𝑧1 + 𝜖3 
𝑥4 =  𝑧2 + 𝜖4,  𝑥5 =  −𝑧2 + 𝜖5,  𝑥6 =  𝑧2 + 𝜖6 

• 𝜖1, … , 𝜖6 ~ 𝑁(0, 1
16

) 

• Fit the model on (x,y) 
 

• An “oracle” would identify 𝑥1, 𝑥2 and 𝑥3 (the 𝑧1 group) as the most 
important variables, but none of the 𝑧2 group variables 
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Elastic Net vs. LASSO  

33 
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Elastic Net vs. LASSO 
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Elastic Net vs. LASSO  

• The Elastic Net includes more non-zero coefficients than LASSO, but with 
smaller magnitudes 

35 
-5 -4 -3 -2 -1 0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Log Lambda

C
oe

ffi
ci

en
ts

12 10 10 7 1 0

-5 -4 -3 -2 -1 0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Log Lambda

C
oe

ffi
ci

en
ts

47 46 43 33 20 0



towerswatson.com 

Extension to GLM  

• GLM consists of three elements: 
• Dependent variable (y) assumed to come from a probability distribution from 

the exponential family of distributions 
• A linear predictor  𝜂 =  𝑋𝜷 
• A link function 𝑔 such that 𝐸(𝑌)  =  𝜇 =  𝑔−1(𝜂) 

• Estimate the coefficients 𝜷 by solving a set of equations to satisfy the 
maximum likelihood criterion:   

𝜷�𝐺𝐿𝐺 = arg max 𝐿 𝑦;𝜷    

 equivalently     

𝜷�𝐺𝐿𝐺 = arg min − log 𝐿(𝑦;𝜷)   
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Extension to GLM  

• For penalized regression, the coefficients are obtained by solving the 
following equation:  

𝜷�𝑃𝑃𝑎𝑎𝑃𝑖𝑧𝑃𝑎 = arg min − log 𝐿 𝑦;𝜷 + 𝜆 ∙ 𝐽(𝜷)  

• Optimization problem is harder and slower to solve 
• The regularization path is piece-wise smooth rather than piece –wise 

linear 
• Many algorithms are developed to solve this problem 

• Park and Hastie developed an algorithm to find the points where variables are 
added and then used a piece-wise linear approximation 
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Software to fit LASSO and Elastic Net 

• Several packages are currently available in R including:  
• glmnet  
• elasticnet 
• LARS 
• penalized  

• Models that are currently available:  
• Linear regression models  
• Logistic regression models  
• Multinomial regression models  
• Poisson regression models 
• Cox models 
• Alas, no gamma model; but may be coming soon!  

• Currently not available in most other programs 
• SAS implemented LASSO for linear models 
• PROC GLMSELECT can be used to implement the Elastic Net for linear models 
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Appendix  
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A few extensions and close relatives  
to LASSO and Elastic Net 
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Some other extensions 

• Group LASSO 
• Sparse group LASSO 
• Adaptive LASSO 
• Adaptive Elastic Net 
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Group LASSO 

• Introduced by Yuan & Lin (2007) 
• Variables might come in groups, so need to include or 

exclude the entire group 
 

𝜷�𝑮𝑮𝑮 𝑶𝑳𝑶𝑶𝑶 = arg min  � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2

+  𝜆 ∙� 𝑝𝑃

𝑂

𝑙=1

∙ 𝜷𝒍 2

𝑁

𝑖=1

 

 
• All or nothing approach.  

• Does not allow for individual levels to have zero coefficients 
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Sparse group LASSO 

• Introduced by Friedman, Hastie and Tibshirani (2010) 
• A compromise between Group LASSO and LASSO 

𝜷�𝑶 𝑮 𝑶𝑳𝑶𝑶𝑶 = arg min  � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2

+  𝜆1 ∙� 𝑝𝑃

𝑂

𝑙=1

∙ 𝜷𝒍 2

𝑁

𝑖=1

+ 𝜆2 ∙ 𝜷 1  
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Group LASSO 

LASSO 

Sparse group 
LASSO 

𝑥𝑥 and 𝑥𝑥 
belong to 
the same 

group 

𝑥1 and 𝑥2  
belong to 
the same 

group 
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Adaptive LASSO 

• LASSO shrinks all the coefficients by the same magnitude  
• More reasonable to shrink large coefficients more than small coefficients  
• Adaptive LASSO does exactly that… 

�̂�𝐴𝑎𝑎 𝐿𝐴𝐿𝐿𝐿 = arg min � 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2

+ 𝜆 ∙�𝑤�𝑗

𝑝

𝑗=1

𝛽𝑗

𝑁

𝑖=1

 

• Adaptive LASSO exhibits oracle properties 
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Adaptive Elastic Net 

• Adaptive Elastic Net is a similar variation of the Adaptive LASSO 
  
�̂�𝐴𝑎𝑎 𝐸𝑁𝑃𝑡

= 1 + λ2 ∙ arg min�� 𝑦𝑖 − 𝛼 −�𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

2

+ �̇�1 ∙�𝑤�𝑗

𝑝

𝑗=1

𝛽𝑗

𝑁

𝑖=1

+ 𝜆2 ∙ � 𝛽𝑗2
𝑝

𝑗=1 

� 

 

where 𝑤�𝑗 = 𝛽�𝑗 𝐸𝑁𝑃𝑡
−𝛾 
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Bayes Theorem 

• Bayes Rule:  

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴  𝑃 𝐴

𝑃 𝐵  

• In the regression context:  
 

𝑃 𝛽 𝑦 ∝ 𝑃 𝑦 𝛽 𝑃 𝛽  
 

• ‘‘Posterior is proportional to prior times likelihood’’  
• For OLS, we assume no prior knowledge about 𝛽 
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Bayesian interpretation of Ridge regression 

• In the Ridge regression, we expect a priori that the parameters will be 
small 

• A reasonable prior distribution is normal with mean value zero:  

𝑃 𝛽 ∝  𝑃−
1
2𝜎2 𝛽 2

2
 

• Then the posterior probability is:  

𝑃 𝛽 𝑦 ∝ 𝑃−
1
2 𝑦−𝛽𝛽 2

2+ 1
𝜎2 𝛽 2

2
 

• The mode is given by: 

𝑦 − 𝛽𝑋 2
2 +

1
𝜎2 𝛽 2

2 

     which is the Ridge solution  where 𝜆 = 1
𝜎2
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Bayesian interpretation of LASSO and Elastic Net 

• For LASSO, the prior is given by: 
 

𝑃 𝛽 ∝  𝑃−
𝜆
2 𝛽 1 

 
• For Elastic Net, the prior is 

given by: 
 
𝑃 𝛽 ∝  𝑃−

1
2 𝜆1 𝛽 1+𝜆2 𝛽 2

2
 

 
 

49 



towerswatson.com 

Contact information 

If you would like additional information or references for this presentation, 
please contact: 

 
Mohamad Hindawi, PhD, FCAS 
Towers Watson  
175 Powder Forest Dr.  
Weatogue, CT 06089 
860.843.7134  
Mohamad.Hindawi@towerswatson.com 
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