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Disclaimer

The views expressed in this presentation are those of the author and do not
necessarily reflect the views of CNA Financial Corporation or any of its
subsidiaries. This presentation is for general informational purposes only.
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Highlights

Agenda

I Introduction to the Tweedie compound Poisson distribution

Construction and simulation of compound Poisson variables
Overview of the challenges on statistical inference
Investigation of the impact of the index parameter on inferences
Description of the data under study

I Compound Poisson linear models

Generalized linear models [GLM]
Generalized linear mixed models [GLMM]

• Shrinkage estimates
• Accounting for within-cohort correlations

Generalized additive models [GAM] / penalized splines
• Specifying smoothing effects vs global linear trends

Zero-inflated compound Poisson models [ZICP]
• Accounting for “bonus hunger”
• Modeling patterns in the observed frequency of zeros

I Summary and conclusion
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Introduction to the compound Poisson distribution

The compound Poisson distribution

The Tweedie compound Poisson distribution

I The goal is to model the aggregate claim amount for a policy term.

I The well-known collective risk model:

The sum of an unknown number of individual claims

Y =
T∑
i

Xi (1)

T is the number of claims, Xi is the loss amount for the ith claim.

I A special case: the Tweedie compound Poisson distribution [CPois]

T ∼ Pois(λ), Xi
iid∼ Gamma(α, γ), T ⊥ Xi . (2)
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Introduction to the compound Poisson distribution

The compound Poisson distribution

Motivations for employing the CPois distribution

I Reasonable assumptions: Poisson frequency and Gamma severity

I Capability to accommodate the aggregate loss distribution: it has a
probability mass at zero accompanied by a continuous distribution on the
positive values

I Belongs to the exponential dispersion family: Var(Y ) = φ · µp

φ > 0: dispersion parameter, p ∈ (1, 2): the index parameter
V (µ) = µp: the variance function
Various linear model forms can be readily handled for a given p

I The density is intractable, but can be approximated accurately and fast.

In general, compound distributions must be evaluated using the less efficient
and much slower recursive algorithm.
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Introduction to the compound Poisson distribution

Simulation of the compound Poisson distribution

Simulation of a CPois variable (1)

I It is straightforward to simulate from the CPois distribution.

library(tweedie)
n <- 300
mu <- 1;
phi <- 1;
p <- 1.7
s1 <- rtweedie(n, mu = mu,

phi = phi, power = p)
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Introduction to the compound Poisson distribution

Simulation of the compound Poisson distribution

Simulation of a CPois variable (2)

lambda <- mu^(2 - p) / (phi * (2 - p))
alpha <- (2 - p) / (p - 1)
gamma <- phi * (p - 1) * mu^(p - 1)
s2 <- sapply(rpois(n, lambda), function(x)

ifelse(x > 0, sum(rgamma(x, alpha, scale = gamma)), 0))

s2

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

Wayne Zhang Compound Poisson Linear Models 03/21/2011 7/ 37



Introduction to the compound Poisson distribution

Challenges on statistical inferences

Existing challenges

I Available fitting methods require the index p to be known.
Pre-specify it with an “expert” selection.

• What’s the impact of the index p on inference?
• Little impact on regression parameters
• Significant impact on φ, thus on estimated standard errors and hypothesis tests

Inference on p, i.e., estimation of the variance function:
• Full maximum likelihood estimation with density approximation

I Extensions of the CPois distribution:

The zero-inflated Poisson [ZIP] model has better performances than a regular
Poisson model in modeling claim counts.
Excess zeros: “Hunger for bonus”
Patterns in observed frequencies of zeros
If T ∼ ZIP, this yields a zero-inflated compound Poisson model [ZICP].
Extension to the severity part is more difficult!
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Introduction to the compound Poisson distribution

Impact of the index parameter

Impact of p on parameter estimates
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Introduction to the compound Poisson distribution

Impact of the index parameter

Impact of p on P-values
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Introduction to the compound Poisson distribution

Data description

Data description

I Examples are illustrated using a data set:

A sample composed of 27,246 policies issued during 2006-2009.
93.2% of the policies reported no claims.
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Compound Poisson linear models

Generalized linear models

Generalized linear models

η(µ) = Xβ (3)

I Denote σ = (φ, p)′ as the vector of nuisance parameters.

I For a given p (or σ), we can estimate the model using the widely available
Fisher’s scoring algorithm: β̂(σ).

I We can profile out β from the likelihood and maximize the profile likelihood
to estimate σ as

σ̂ = arg max
σ

`(σ|y, β̂(σ)). (4)

I The likelihood is approximated using numerical methods, and then optimized
subject to φ > 0 and p ∈ (1, 2).

I The estimate for β is β̂(σ̂).
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Compound Poisson linear models

Generalized linear models

Fitting the model

I We specify a pure premium model:

Log link function
LOSS as the response variable
The log of the exposure as an offset
12 predictors - their names are masked here
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Compound Poisson linear models

Generalized linear models

Inference results

Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.48427 0.32700 -16.771 < 2e-16 ***
var1 -0.53909 0.02715 -19.855 < 2e-16 ***
factor(var2)1 -0.17072 0.11328 -1.507 0.13181
factor(var3)1 -0.23210 0.08705 -2.666 0.00768 **
factor(var4)1 -0.04758 0.10541 -0.451 0.65172
var5 -0.10532 0.04399 -2.394 0.01667 *
var6 -0.19469 0.03690 -5.276 1.33e-07 ***
var7 -0.06089 0.04002 -1.521 0.12817
var8 -0.06276 0.04042 -1.553 0.12049
var9 0.16668 0.04248 3.924 8.74e-05 ***
var10 0.25248 0.03955 6.384 1.76e-10 ***
var11 0.05539 0.04428 1.251 0.21092
var12 0.07475 0.03581 2.088 0.03685 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(MLE estimate for the dispersion parameter is 22.829 ;
MLE estimate for the index parameter is 1.4749 )

Residual deviance: 138337 on 27233 degrees of freedom
AIC: 26148
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Compound Poisson linear models

Generalized linear mixed models

Generalized linear mixed models

I Extend the GLMs by including random effects:

η(µ) = Xβ + Zb

b ∼ (0,Σ)

I The distribution on b shrinks its estimate toward zero.

I The Bülmann credibility formula is a special case of the (Normal) mixed
model with only the intercept.

I Existing inference method: Penalized Quasi-likelihood

Not suited to estimating p- the objective function maximized is not truly an
approximation of the likelihood
Likelihood ratio tests to compare nested models?
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Compound Poisson linear models

Generalized linear mixed models

Estimation in GLMM

I We consider full maximum likelihood estimation methods that maximize the
marginal likelihood

p(y|β, φ, p,Σ) =

∫
p(y|β, φ, p,b) · p(b|Σ)db. (5)

I This integral is intractable and must be evaluated numerically.
1 Laplace approximations

• Integrate out b using the second-order Taylor approximation to the joint
likelihood at the conditional mode of b.

• Conditional mode of b is found using Penalized Iteratively Re-weighted Least
Squares.

2 Adaptive Gauss-Hermite quadrature
• Higher-order integral approximation
• Collapse to the Laplace method when only one knot is specified
• More accurate at the cost of slower speed
• Limited to a single grouping factor
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Compound Poisson linear models

Generalized linear mixed models

Fitting the model

I We allow intercepts to vary by COUNTY

I This will account for the within county correlation: closer risks are more alike

I This will also shrink parameter estimates:

Estimates for small counties are pulled toward the overall mean for lack of
credibility
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Compound Poisson linear models

Generalized linear mixed models

Inference results
Random effects:
Groups Name Variance Std.Dev.
COUNTY (Intercept) 0.034618 0.18606
Residual 22.686004 4.76298

Number of obs: 27246, groups: COUNTY, 56

Fixed effects:
Estimate Std. Error t value

(Intercept) -5.54023 0.28477 -19.455
var1 -0.54251 0.02333 -23.258
factor(var2)1 -0.18056 0.09762 -1.850
factor(var3)1 -0.22919 0.07530 -3.044
factor(var4)1 -0.07363 0.09514 -0.774
var5 -0.10870 0.03794 -2.865
var6 -0.19327 0.03176 -6.086
var7 -0.05482 0.03452 -1.588
var8 -0.05690 0.03484 -1.633
var9 0.21623 0.05443 3.973
var10 0.23819 0.05598 4.255
var11 0.10114 0.04767 2.122
var12 0.07608 0.03080 2.470

Estimated scale parameter: 22.686
Estimated index parameter: 1.4757
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Compound Poisson linear models

Generalized linear mixed models

County estimates
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Compound Poisson linear models

Generalized additive models

Introduction to splines

I Splines offer a flexible means of modeling nonlinear pattern:

It is hard to find an appropriate parametric nonlinear model.

I Model the pattern using piece-wise polynomials (basis functions):

Number of cut-off points (knots)
Positioning of the knots

Form X Z
Linear x (x − κ1)+, (x − κ2)+

Quadratic x, x2 (x − κ1)2
+, (x − κ2)2

+

Cubic x, x2, x3 (x − κ1)3
+, (x − κ2)3

+
Radial x |x − κ1|, |x − κ2|

Table: Basis functions.
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Compound Poisson linear models

Generalized additive models

Spline bases in GLM

I These basis functions can be used in a linear model as (e.g., with linear basis
functions)

η(µi ) = β0 + β1xi +
K∑

k=1

bk(xi − κk)+. (6)

I Using matrix notation,

η(µ) = Xβ + Zb. (7)

β = (β0, β1)′ is the coefficients for intercept and x ;
b = (b1, · · · , bK )′ is the coefficients for the basis functions having knots;
Xi = (1, xi ) and Zi = [(xi − κ1)+, · · · , (xi − κK )+] design matrix.
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Compound Poisson linear models

Generalized additive models

Problem with choices of spline knots

I Too few - not enough to describe the pattern.
I Too many - wiggly fit, including too much noise.

knots = 3

knots = 10

knots = 5

knots = 20
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Compound Poisson linear models

Generalized additive models

Additive models: penalized splines

I To avoid wiggly fit, we impose the constraints bTb < C .

I This “penalty” is equivalent to assuming

bk ∼ N(0, σ2
b). (8)

I This provides a convenient way to estimate additive models using the mixed
model software.
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Compound Poisson linear models

Generalized additive models

Fitting the model

I We specify a smoothing effect for var1 using a linear spline.

I We use 15 knots, determined by empirical quantiles.

I Fit the model using the mixed-model estimation method.
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Compound Poisson linear models

Generalized additive models

Inference results

Random effects:

Groups Name Variance Std.Dev.

f.var1 tp 0.015549 0.12469

Residual 22.727942 4.76738

Number of obs: 27246, groups: f.var1, 14

Fixed effects:

Estimate Std. Error t value

(Intercept) -11.12784 0.24438 -45.54

var1.fx1 -0.22747 0.17502 -1.30

factor(var2)1 -0.15661 0.09742 -1.61

factor(var3)1 -0.21359 0.07490 -2.85

factor(var4)1 -0.05137 0.09054 -0.57

var5 -0.11730 0.03803 -3.08

var6 -0.19423 0.03168 -6.13

var7 -0.05469 0.03439 -1.59

var8 -0.06505 0.03477 -1.87

var9 0.16463 0.03646 4.51

var10 0.24712 0.03398 7.27

var11 0.05807 0.03798 1.53

var12 0.07783 0.03080 2.53

Estimated scale parameter: 22.7279

Estimated index parameter: 1.4763
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Compound Poisson linear models

Generalized additive models

Smoothing effect on var1
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Compound Poisson linear models

Zero-inflated models

The Zero-inflated compound Poisson distribution

I Zero-inflated Poisson model to account for excess zeros in count data:

Ti ∼

{
0 with probability qi ,

Pois(λi ) with probability 1− qi .
(9)

I Replacing the latent Poisson variable by the above zero-inflated Poisson, we
have a zero-inflated compound Poisson:

Yi ∼

{
0 with probability qi ,

CPois(µi , φ, p) with probability 1− qi .
(10)

The zero-inflation part generates the excess zeros with probability qi .
The compound Poisson part generates the random claim amount from the
compound Poisson process.
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Compound Poisson linear models

Zero-inflated models

The ZICP model

I Under this assumption, the probability of observing a zero is

Pr(Yi = 0) = qi + (1− qi ) · exp

(
−

µ2−p
i

φ(2− p)

)
. (11)

I We allow covariates to be incorporated in both parts such that

ϕ(q) = Gγ, η(µ) = Bβ. (12)

I The zero-inflation part enables one to

Investigate the claim underreporting behavior due to bonus hunger.
More adequately model the patterns in the observed frequency of zeros .
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Compound Poisson linear models

Zero-inflated models

Fitting the model

I We specify four relevant covariates in the zero-inflation part.

I The offset term is only used for the compound Poisson part.
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Compound Poisson linear models

Zero-inflated models

Inference results

Zero-inflation model coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.76568 0.87536 6.587 4.50e-11 ***

var1 -0.57326 0.08098 -7.079 1.45e-12 ***

var5 0.26870 0.08934 3.008 0.002633 **

var12 -0.29465 0.07935 -3.713 0.000205 ***

var6 0.39966 0.11359 3.519 0.000434 ***

Compound Poisson model coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.08997 0.38046 -8.122 4.60e-16 ***

var1 -0.70988 0.03144 -22.580 < 2e-16 ***

factor(var2)1 -0.17217 0.09748 -1.766 0.07735 .

factor(var3)1 -0.21038 0.07560 -2.783 0.00539 **

factor(var4)1 -0.03911 0.09126 -0.429 0.66820

var5 -0.01280 0.05290 -0.242 0.80879

var6 -0.08766 0.04214 -2.080 0.03753 *

var7 -0.05532 0.03574 -1.548 0.12167

var8 -0.06335 0.03617 -1.751 0.07988 .

var9 0.15679 0.03732 4.202 2.65e-05 ***

var10 0.24797 0.03419 7.254 4.06e-13 ***

var11 0.05167 0.03990 1.295 0.19532

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(MLE estimate for the dispersion parameter is 19.079 ;

MLE estimate for the index parameter is 1.486 )
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Compound Poisson linear models

Zero-inflated models

Predicted probability of zeros (1)
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Compound Poisson linear models

Zero-inflated models

Predicted probability of zeros (2)
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Compound Poisson linear models

Zero-inflated models

Predicted probability of zeros (3)
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Compound Poisson linear models

Zero-inflated models

Predicted probability of zeros (3)
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Compound Poisson linear models

Zero-inflated models

Model comparisons

I The information criteria
I The 10-fold cross validation mean squared error (not quite informative)
I The Gini index

Let yi be the loss, Pi be the baseline premium, Si be the insurance score
(predictions from the model) and Ri = Si/Pi be the relativity.
Sort the observations by the relativity in an increasing order.
Compute the empirical cumulative premium and loss distributions as

F̂P(s) =

∑n
i=1 Pi · 1(Ri ≤ s)∑n

i=1 Pi
, F̂L(s) =

∑n
i=1 yi · 1(Ri ≤ s)∑n

i=1 yi
. (13)

The graph
(
F̂P(s), F̂L(s)

)
is an ordered Lorenz curve.

Loglikelihood AIC BIC MSE Gini
GLM -13067.43 26147.85 26267.61 24.98 -1.62(2.13)
ZICP -13022.18 26078.36 26217.98 24.95 6.92(2.10)
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Compound Poisson linear models

Zero-inflated models

The ordered Lorenz curve
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Summary and conclusions

Summary

I Reviewed the compound Poisson distribution.

I Discussed the challenges on statistical inference.

I Presented MLE methods for estimating various linear models.

I Illustrated these techniques through an example.
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