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Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the 
letter and spirit of the antitrust laws.  Seminars conducted under the 
auspices of the CAS are designed solely to provide a forum for the 
expression of various points of view on topics described in the 
programs or agendas for such meetings.  

Under no circumstances shall CAS seminars be used as a means for 
competing companies or firms to reach any understanding – expressed 
or implied – that restricts competition or in any way impairs the ability of 
members to exercise independent business judgment regarding 
matters affecting competition.  

It is the responsibility of all seminar participants to be aware of antitrust 
regulations, to prevent any written or verbal discussions that appear to 
violate these laws, and to adhere in every respect to the CAS antitrust 
compliance policy.
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Why Bayes, Why Now
From John Kruschke, Indiana University: 
“An open letter to Editors of journals, Chairs of departments, Directors of funding programs, 

Directors of graduate training, Reviewers of grants and manuscripts, Researchers, 
Teachers, and Students”:

Statistical methods have been evolving rapidly, and many people think it’s time to adopt 
modern Bayesian data analysis as standard procedure in our scientific practice and in our 
educational curriculum. Three reasons:

1. Scientific disciplines from astronomy to zoology are moving to Bayesian data analysis. 
We should be leaders of the move, not followers.

2. Modern Bayesian methods provide richer information, with greater flexibility and broader 
applicability than 20th century methods. Bayesian methods are intellectually coherent and intuitive. 
Bayesian analyses are readily computed with modern software and hardware.

3. Null-hypothesis significance testing (NHST), with its reliance on p values, has many problems. 
There is little reason to persist with NHST now that Bayesian methods are accessible to 
everyone.

My conclusion from those points is that we should do whatever we can to encourage the 
move to Bayesian data analysis. 

(I couldn’t have said it better myself…)
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Why Bayes, Why Now
From an Interview with Sharon Bertsch McGrayne in Chance Magazine: 

“When I started research on [my] book, I could Google the word ‘Bayesian’ and get 100,000 
hits.  Recently I got 17 million.”
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Our Profession’s Bayesian Heritage:  Early

• Late 18th Century:  Thomas Bayes and Pierre-Simon Laplace 
formulate the principles of “inverse probability” 

• Probabilistic inference from data to model parameters
• Bayes’ intellectual executor, Richard Price, became perhaps the world’s first 

consulting actuary (Equitable Life Assurance company, London)
• Price’s – and perhaps Bayes’ – thinking was influenced by the publication of 

David Hume’s Treatise on Human Nature (1740)

• 1918:  A. W. Whitney “The Theory of Experience Rating”.
• Advocated combining the claims experience of a single risk with that of a 

cohort (class, portfolio, …) of similar risks.

• Estimated pure premium should be a weighted average of the individual risk’s 
claim experience with that of the cohort… k is judgmentally determined.
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Our Profession’s Bayesian Heritage:  Early-Modern

• 1950:  Arthur Bailey publishes “Credibility Procedures:  Laplace’s 
Generalization of Bayes’ Rule and the Combination of Collateral 
Knowledge with Observed Data”. 

• Anticipates Hans Bühlmann's subsequent work.
• Quoted Richard Price on making inferences from available data. 

“At present, practically all methods of statistical estimation appearing in textbooks… 
are based on an equivalent to the assumption that any and all collateral information 
or a priori knowledge is worthless.  There have been rare instances of rebellion 
against this philosophy by practical statisticians who have insisted that they actually 
had a considerable store of knowledge apart from the specific observations being 
analyzed… However it appears to be only in the actuarial field that there has been an 
organized revolt against discarding all prior knowledge when an estimate is to be 
made using newly acquired data.”
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Our Profession’s Bayesian Heritage:  Mid-Century Modern

• 1967:  Bühlmann’s “greatest accuracy” Bayes credibility model. 
• Let Xij denote dollars of loss associated with risk i at time j.
• Assume X1, …, Xm are iid, conditional on a parameter (vector) θ
• Let m(θi) denote “risk premium”:  m(θi)≡E[Xij|θi]

• Bühlmann minimizes mean squared errors:

• … to arrive at an estimator for m(θi):

• … where:

• The within/between variances in k are estimated from the data.
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Our Profession’s Bayesian Heritage:  Modern

?



Bayesian Concepts
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Vocabulary

• Exchangeability

• Credible intervals vs confidence intervals

• Predictive distributions

• Shrinkage / Credibility

• Hierarchical models

• “Borrowing strength”

• Markov Chain Monte Carlo Simulation



Interpreting Probability
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It All Starts a Certain Difference of Opinion

• From a mathematical point of view, probabilities are countably
additive, [0,1]-valued functions. Period.

• For all events E: Prob(E) ≥ 0
• If Ω denotes the sample apace: Prob(Ω) = 1
• For pairwise disjoint {Ei}: Prob(E1∪E2∪…) = Prob(Ei)

• But whenever mathematics is applied to the world, the 
relevant concepts must be interpreted.

• E.g. in optics a parabola might represent a reflective surface.
• In biology it might represent some sort of growth.
• The mathematics is the same either way.
• But the interpretation is crucial.

• What is the analogous interpretation of probability functions?
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Take a Simple Example

• Consider the toss of an 
ordinary coin.

• Prob(Heads) = ½   
is a mathematical 
statement.

• But what does this 
statement mean?
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The Frequentist View

• Probabilities represent frequencies in sequences of repeated 
events

• Emanating from situations involving physical randomization. 

• “The probability of heads is ½” means that the coin will come up 
heads roughly half the time in a sequence of tosses.

• The more tosses, the closer we this relative frequency approaches 0.50.
• Prob(H) = ½ means:

• Many people find this interpretation most acceptable because it is 
“physical” and “objective” and therefore “scientific”.
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The Bayesian View

• Probabilities represent degrees of certainty or uncertainty.

• “The probability of heads is ½” means that the speaker believes 
that the coin is fair.

• Ideally (s)he would be willing to pay $1 for a gamble that pays $2 if 
the coin lands heads and $0 otherwise.

• People often object to the Bayesian notion because it is 
“subjective” and therefore presumably not appropriate in scientific 
investigations.

• “My belief is that the probability of an earthquake in San Francisco in the next 
decade is 30%”

• “Who cares about what you believe?”
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Subjective Probability

• “Subjective Probability”
• Maybe too loaded a term?
• Historically a lot of confusion and (rather geeky) polemics
• “PROBABILITY DOES NOT EXIST” – Bruno de Finetti

• “Evidential probability”
• Maybe a more helpful term?

• It is unanimously agreed that statistics depends somehow on probability. But, as 
to what probability is and how it is connected with statistics, there has seldom 
been such complete disagreement and breakdown of communication since the 
Tower of Babel. Doubtless, much of the disagreement is merely terminological 
and would disappear under sufficiently sharp analysis.”

‒ L. J. Savage, The Foundations of Statistics
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A Farsighted Bayesian

• Bruno de Finetti was one of the 
most important Bayesian 
theorists of the 20th century.

• Some interesting history:
• de Finetti started off as an actuary
• Independently rediscovered the 

ideas of the Bloomsbury 
mathematician/economist      
Frank Ramsey.

• Jimmy Savage introduced           
de Finetti’s work to the       
English-speaking world.

• Savage and de Finetti both 
appreciated Arthur Bailey’s work in 
credibility theory in the 1950s.
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A Representation of de Finetti
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Single-Case Probabilities

• The interpretation of probabilities in terms of limiting relative 
frequencies is intuitive at first.

• But often in life and in actuarial science we also find it intuitive to 
assign probabilities to events that are not part of a sequence of 
independent random trials.

• What is the probability Obama will win a 2nd term office?
• What is the probability of a magnitude 6.7 or greater earthquake in the San 

Francisco bay area before 2030?
• What is the probability that the ultimate losses for a cohort of insurance claims 

incurred in 2012 will fall in the $1M-$1.2M range?
• What is the probability that the Los Angeles will be the target of a terrorist 

attach within the coming decade?
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Measuring Probabilities

• What is the probability Obama will win a 2nd term office?

• Frequentist answer:  I can only answer if Obama’s reelection can 
be viewed as a repeatable event in which the uncertainty is due to 
randomness.

• And the probability is the relative frequency after the event is embedded in 
this long run of repeated trials.

• If it can’t be so embedded… no answer.

• Bayesian answer:  the uncertainty is due to lack of knowledge.
• I can quantify my beliefs through betting behavior
• Suppose I will pay $50 for a lottery ticket that will return $200 if Obama is 

reelected; nothing otherwise.
• Then my subjective probability is of Obama being elected is 25%.
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Probability as Coherence:  Dutch Book Arguments

• Attributed to Frank Ramsey (of the Bloomsbury Group) and Bruno 
de Finetti.

• If someone’s subjective probabilities do not obey the probability 
axioms, then they are “incoherent” in the sense that:

• Someone could write a “Dutch Book” against that person.

• A series of bets in which the person would lose money on any 
outcome.

• In principle, subjective probabilities can be measured through 
betting behavior.



Learning from Data
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Classical and Bayesian Methodology – Learning from Data

• Let’s continue thinking about coin tosses.

• Suppose Persi pulls a coin from his pocket and flips it 12
times. 3 of these tosses land heads.

• If Persi were to toss the coin again, what is the probability 
it would land heads?

• This seems like a silly example but:
• When thinking about difficult conceptual issues it helps to start with 

simple examples.
• And besides, it’s not silly.  Suppose last year a company sold 

medical malpractice insurance to 12 heart surgeons in a new zip 
code, 3 of which had large claims… this year they are thinking about 
underwriting a 13th heart surgeon in the same state… 
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How Frequentist and Bayesian Analyses Differ

• The methodological differences between frequentists and 
Bayesians emanate from the philosophical difference about the 
interpretation of probability.

• Frequentists:  the “true probability of heads” is a fact about the 
world that is manifested in relative frequencies in repeated tosses.

• The outcome of 3 heads in 12 tosses is one of many possible outcomes of 
sampling from the “true distribution in the sky”.

• Probability is assigned to the data… not to model parameters

• Bayesians:  the data is a fact in the world.  We assign 
probabilities to quantities we are uncertain about…

• Probabilities are not assigned to data (although we can incorporate 
observation errors/sampling mechanisms in a model).

• Rather, probabilities are assigned to model parameters which we do not 
know with certainty.
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A Frequentist Analysis

• To repeat:  the data (h=3, n=12) is viewed as the random outcome 
of a sampling process that could be repeated ad infinitum.

• From a frequentist POV, what can we infer from the data?

• Let’s assume the events {H,T,T,H…} are iid Bernoulli(θ)

• From this assumption it follows that the likelihood function is:
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The Frequentist Estimate

• The Maximum 
Likelihood Estimate 
(MLE) is the value of θ
that maximizes the 
likelihood function:

• In this example:      
MLE = 0.25
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What the MLE Means

• Note:  the likelihood function L(θ)= θ3(1-θ)9 is not a probability 
function!  

• It is a function of θ, with the data {H,T,T,H,…} regarded as fixed.
• Remember frequentists don’t assign probabilities to unknown parameters.

• When we maximize likelihood, we select the value θ that results in 
the model under which the actual observations are most likely to 
be observed.

• The MLE tells us “what we think” about the coin given the 
observed data.

• But “how sure are we” about “what we think”?
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Measuring “Confidence”

• Twelve tosses aren’t that many.  How reliable is the maximum 
likelihood estimate of 0.25?

• To address this question we construct a confidence interval:

• LB and UB are random values calculated from the data.

• Here, (LB,UB) = (0.0549, 0.5719)

• Does this mean that there is a 95% probability that θ falls in the 
interval (0.0549, 0.5719)?

• Actually, no.

( ) 95.0Pr =<< UBLB θ
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Measuring “Confidence”

• Confidence interval:

• Again we repeat:  frequentists only assign probabilities to 
repeatable, physically random events like {H,T,T,H,…}…                
… not to parameters like θ.

• θ either is or is not in the interval [0.0549, 0.5719]

• Again… what does the above statement mean?

( ) 95.0Pr =<< UBLB θ
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Frequently Asked Question

• Confidence interval:

• What this mean?  Answer:

• Suppose we repeated our experiment many times… 
• For each of the next 1000 days, Persi will flips his coin 12 times.
• Each time he will construct a confidence interval like the one above
• The resulting interval will differ each day according to how many tosses 

come up heads on that day.

• But what we can say is that approximately 950 of these intervals 
will contain the true value of heads!

• Is this really what people think when they talk about confidence intervals?

( ) 95.0Pr =<< UBLB θ



33 Deloitte Analytics Institute © 2010 Deloitte LLP

Frequently Asked Question

• Confidence interval:

• Our 95% “level of confidence” is a measure of the method used to 
calculate LB and UB…

• … not a measure of our belief that θ lies in the specific interval 
determined by any particular sample.

• It all goes back to the fundamental principle that probabilities can 
be assigned only to repeatable random quantities.

• {X1, X2, …}, LB, UB are such quantities.
• θ is not.
• What a tangled web we weave.

( ) 95.0Pr =<< UBLB θ
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The Bayesian Alternative

• For an alternate approach let’s go back to the Bayesian first 
principle.

• We assign probabilities to quantities that we are uncertain about.

• We are uncertain about whether the coin is fair… what is the “true 
probability of heads” θ?

• θ can take on values between [0,1].

• So the Beta(α,β) distribution is a good choice.
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MahaBeta

• The Beta(α,β) family 
distributions is:

• Defined on [0,1].

• Very flexible.

• In just about any 
realistic scenario this 
family will contain a 
reasonable choice for 
modeling our 
(un)certainty about the 
probability of heads.
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Choice of Priors

• The blessing and the 
curse of Bayesian 
statistics:

• We model uncertainty 
quantities with 
probabilities.

• So even before we 
take our data into 
account we need to 
select a “prior” 
probability distribution 
for θ.
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Choice of Priors

• Here are a few choices 
that are symmetric with 
respect to the 
possibility of the coin 
being biased towards 
heads of tails.

• Beta(1,1) – the “flat 
prior”… we have no 
idea whether the coin 
is biased, or how 
biased it is.
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Choice of Priors

• Beta(100000,100000):  
we have virtual prior 
certainty that the coin 
is fair.

• In the limiting case 
where we have prior 
certainty, it means no 
possible evidence 
could change our 
mind.
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Choice of Priors

• Beta(20,20):  an 
intermediate case.

• We have some reason 
to think that the coin is 
biased.

• E.g. maybe Persi is a 
magician that has been 
known to flip biased 
coins in the past.

• But we don’t believe 
that the coin is more 
likely to be biased 
towards heads or tails.
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Updating Subjective Probability

• The prior distribution summarizes our beliefs before we have taken 
the data into account.

• The data (3 heads in 12 tosses) might lead us to change our 
beliefs about the coin… 

• … so our probability function over θ should change accordingly.

• A well known foundational paper on this topic:
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Updating Subjective Probability

• Bayes’ Theorem (a mathematical fact):

• Bayes’ updating rule (a methodological premise):  

• Let P(H) represents our belief in hypothesis H before receiving 
evidence E.

• Let P*(H) represent our belief about H after receiving evidence E.

• Bayes Rule:  P*(H) = Pr(H|E)
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Updating Subjective Probability
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The Beta-Binomial Case

• Bayes’ Theorem:

• Likelihood:

• Prior:

• So by Bayes Rule:

• Posterior:

 updating takes the form:  
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The Probability of Heads: Prior Uncertainty

• Let’s assume absolutely 
no prior knowledge about 
whether, or the degree to 
which, the coin is biased.

• Maybe Persi drew it at 
random from a large urn of 
coins, which have uniformly 
distributed physical 
probabilities of heads.

• Or maybe we just have no 
idea what tricks Persi might 
have up his sleeve.

• Kind of like life.
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The Probability of Heads: After 12 Flips

• Our data is 3 heads in 12 
tosses.

• We use the Bayes 
updating rule to update 
our belief (probability) 
about θ in the light of the 
data.
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prior distribution (0 flips)
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The Probability of Heads
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The Probability of Heads: After 52 Flips (Scenario A)

• Suppose Persi flips the 
coin another 40 times and 
the total number of heads 
in all 52 tosses is 13.

• 13/52 = 0.25

• So our posterior 
distribution is still peaked 
at the same place, but 
contains less variability 
around the mode.
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The Probability of Heads: After 52 Flips (Scenario B)

• Of course it could have 
turned out differently.

• Here’s what our posterior 
would look like if Persi’s
luck changed and the total 
number of heads in 52 flips 
ended up being 27.

• Close to symmetric.
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And if We’d Started with an Informative Prior…

• A major weakness of the 
Bayesian paradigm:    the 
need to specify a prior.

• A major strength of the 
Bayesian paradigm:  the 
ability to specify a prior!

• A rigorous way of incorporating 
expert judgment and 
background knowledge in 
one’s analysis.

• The data (3/12) is strongly 
tempered by our prior belief.

• A “shrinkage” phenomenon.
• This is a good thing 0.0 0.2 0.4 0.6 0.8 1.0

theta

Starting With a Stronger Prior Belief
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prior distribution (0 flips)

posterior distribution (12 flips)
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The Frequentists’ Declaration of Independence

• So we’ve got the prior probability distribution covered.

• What about the likelihood function?

• Recall that the frequentist MLE method began by assuming that 
the coin tosses as iid Bernoulli. 

• We assume independence. 

• This makes sense given the frequentist premise that θ is fixed and 
the data {H, T, T, H, …} is a random draw from a “sampling 
distribution in the sky”.

• But does independence make sense from a Bayesian POV?
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Taleb’s Question

• But does independence make sense from a Bayesian POV?

• Let’s take a page from Nassim Taleb’s book.

Assume that a coin is fair, i.e., has an 
equal probability of coming up heads or 
tails when flipped. I flip it ninety-nine 
times and get heads each time. What are 
the odds of my getting tails on my next 
throw?
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Taleb’s Question

• …What are the odds of my getting tails on my next throw?
Dr. John: Trivial question. One half, of course, since you are assuming 50 percent odds for each 
and independence between draws.

NNT: What do you say Tony?

Fat Tony: I’d say no more than 1 percent, of course.

NNT: Why so? I gave you the initial assumption of a fair coin, meaning that it was 50 percent 
either way.

Fat Tony: You are either full of #$@& or a pure sucker to buy that “50 pehcent” business. The 
coin gotta be loaded. It can’t be a fair game.
(Translation: It is far more likely that your assumptions about the fairness are wrong that the coin 
delivering ninety-nine heads in ninety-nine throws.)

NNT: But Dr. John said 50 percent.

Fat Tony (whispering in my ear): I know these guys with the nerd examples from the bank days. 
They think way to slow. And they are too commoditized. You can take them for a ride.
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Bayesians Aren’t So Certain

• Independence implies that:

• From a Bayesian POV, this implies prior certainty that the coin is 
fair.  

• Prior certainty: Pr(H|E) = Pr(H)
• Our beliefs about proposition H will not change.
• Regardless of how strong the evidence E is.

• We cannot be certain about model parameters θ
• We must average over the possible values using a 

prior/posterior probability distribution as a weight.

( ) ( )
2
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A Fair Exchange

• Rather than assume independence, Bayesians adopt the 
weaker assumption of exchangeability.

• Exchangeability is a kind of symmetry condition that presumably 
reflects a corresponding symmetry in our beliefs.

• “the future will resemble the past.”

• Exchangeability:  the order of a finite set of random variables 
does not affect the joint probability. For all n and permutations σ:

),...,,Pr(),...,,Pr( )()2(2)1(12211 nnnn eXeXeXeXeXeX σσσ =======
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de Finetti’s Representation Theorem

• Suppose {Xi} is exchangeable: 

• Then the limiting relative frequency limn(1/nXi) exists with 
probability 1 and:

• An exchangeable sequence of is a mixture of iid sequences.
• As the posterior μ(θ) becomes sharply peaked, the Bayesian predictive 

distribution approaches the frequentist model.
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The Importance of Exchangeability

• Analogous to the frequentist assumption of independence, some 
form of exchangeability assumption is implicit in all Bayesian 
models.

• Often, this will be a “conditional” exchangeability assumption.

• E.g. the observations across times, states, policies, … are 
exchangeable only once we’ve reflected the relevant information 
in the model.

• Inflation across time…
• Variables capturing aspects of a state’s economy, regulatory environment…
• Variables capturing aspects of a policy…
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Frequentism as a Limiting Case of Bayesianism

• de Finetti’s result – and its extensions – shows that a predictive 
distribution can be represented as a Bayesian mixture of 
frequentist likelihood models.

• Consider the limiting case where our posterior distribution is 
sharply peaked around a specific value of θ.

• Either through prior certainty like Dr John 
• Or a big data set, such as 495 heads in 1000 tosses 

• In this case, the frequentist model is a good approximation of the 
Bayesian predictive distribution. 
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The Strength of Evidence

• For a Bayesian:
• An estimate like the mean of the posterior distribution summarizes what we 

think in the light of 3 heads in 12 tosses
• A credible interval summarizes the strength of this belief

• For a frequentist, the story is less simple:
• The MLE summarizes what the data tells us about the coin
• Confidence intervals summarize the strength of this evidence

• Another frequentist tool:  assessing the “significance” of 
evidence using p-values

• Is the evidence strong enough to reject a null hypothesis?
• Ubiquitous in actuarial science and general scientific research
• But should it be?
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Minding Our p’s

• p-value:  the probability of the observed outcome… or a more 
extreme outcome… assuming the null hypothesis is true.

• A measure of “surprise”

• In the coin example, a natural null hypothesis is that the coin is 
fair:  θ=½

• The probability of 3 or fewer heads assuming θ=½ is:  

• We “fail to reject at the 5% significance level” the hypothesis that 
the coin is fair. 
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p Soup

• One reaction to this logic:  do we really go through life either 
“rejecting” or “failing to reject” things based on what we see?

• Or do we take actions based on provisional beliefs that are shaped by 
evidence?

• But there is a deeper issue.

• On the previous slide we tacitly assumed that Persi set out to flip 
the coin 12 times.

• 3 is the random quantity

• But what if Persi had set out to keep flipping the coin until the 3rd

head appears?
• 12 is the random quantity
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A Likely Story?

• Binomial scenario:  Persi flips 12 times
• We do not reject the hypothesis that the coin is fair.

• Negative Binomial scenario: Persi keeps flipping until nH=3:
• We do reject the hypothesis that the coin is fair.

• Whether or not we reject depends on what Persi intended to 
do when he started flipping!
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A Bayesian Update

• Recall that the Bayesian method is to update our prior 
probability via the likelihood function:

 Bayesian updating obeys the “likelihood principle”
• All of the information in the data is contained in the likelihood 

function.

• This use of p-values violates the likelihood principle.
• Our conclusions depend on results that could have happened in different 

repetitions of he trial.
• The data isn’t enough… we need to know what Persi intended to do.
• … now which looks more “subjective”… frequentist or Bayesian?

• … and think about the implications of this in the medical/clinical trials 
domain.

βαβα θθθκθθθ )1()1()1( 83 −−→−
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Why Isn’t Everyone a Bayesian?
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Why Isn’t Everyone a Bayesian?

• Given that the Bayesian framework is so great, why isn’t it used 
more in practice?

• Answer 1: Actually, it is… things have changed rapidly.

• Answer 2: Thoughts on why frequentism has been dominant.

• (Jim’s speculation): Cognitive biases… failures of probabilistic reasoning
• E.g. the Monty Hall problem, the prosecutor’s fallacy, Kahneman’s blue taxis

• Much of classical statistics is “automatic” in ways that can be programmed 
into canned software packages (PROCs).

• Argument that Bayesian statistics is “subjective” and science isn’t “subjective”.
• Bayesian computation has traditionally been very difficult.

• Pre-1990s:  Bayesian practice was largely limited to ad hoc credibility formulas and conjugate 
prior relationships.
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Bayesian Computation is Hard

• Remember Bayes’ Theorem:

The great virtue of the Bayesian framework: 
• It enables us to calculate a predictive distribution for future 

outcomes Y given past outcomes X:  f(Y|X)
• E.g. in loss reserving, we can get a predictive distribution of future claim 

payments Y given a loss triangle of past payments X.

• But in practice all of this integration is intractable… impasse.
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A New World Order

• This impasse came to an end ~1990 when a simulation-based 
approach to estimating posterior probabilities was introduced.

• (Circa the fall of the Soviet empire and Francis Fukuyama’s “end of history”)
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Monte Carlo Simulation – Review 

• Recall that Monte Carlo simulation enables us to bypass tough 
integration problems by taking independent samples from the 
distribution and averaging over the samples.
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Why Traditional Monte Carlo Isn’t Enough

• Monte Carlo simulation is all well and good when we can write 
down the probability distribution in a computer program.

• But the problem in Bayesian computation is that we generally 
can’t write down an expression for the posterior probability 
distribution!

• Specifically:  the integral in the denominator gets very nasty very 
quickly… especially when θ is a vector of parameters…
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A Random Walk Down Parameter Lane

• OK so we can’t do Monte Carlo because in general we can’t write 
down the posterior probability density f(θ|X).

• But what if we could set up a random walk through our parameter 
space that… in the limit… passes through each point in the 
probability space in proportion to the posterior probability density.

• If we could, then we could just use the most recent x000 steps of 
that random walk as a good approximation of the posterior 
density…

• Yes we can!
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Chains We Can Believe In

• The Metropolis-Hastings sampler generates a Markov chain
{θ1, θ2, θ3,… } in the following way:

1. Time t=1:  select a random initial position θ1 in parameter space.
2. Select a proposal distribution p(θ) that we will use to select proposed 

random steps away from our current position in parameter space.
3. Starting at time t=2:  repeat the following until you get convergence:

a) At step t, generate a proposed θ*~p(θ)
b) Also generate u ~ unif(0,1)
c) If R > u then θt= θ*.  Else, θt= θt-1.

• Step 3c) implies that at step t, we accept the proposed step θ* with 
probability min(1,R).
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Bayesian Computation is Easy?

• At each step we flip a coin with probability of heads min(1,R) and  
accept θ* if the coin lands heads.  

• Otherwise reject θ* and stay put at θt-1.

• But why is this any easier?  R contains the dreaded posterior 
density f(θ|X) that we can’t write down. 

• Here’s why:
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Bayesian Computation is Easy.

• At each step we flip a coin with probability of heads min(1,R) and  
accept θ* if the coin lands heads.  

• Otherwise reject θ* and stay put at θt-1.

• But why is this any easier?  R contains the dreaded posterior 
density f(θ|X) that we can’t write down. 

• Here’s why:
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The integrals in the 
denominator of Bayes 
theorem cancel out… 
they are functions only 
of the data X, not the 
parameters θ.
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Now We Can Go to the Metropolis

• So now we have something we can easily program into a 
computer. 

• At each step, give yourself a coin with probability of heads 
min(1,R) and flip it.

• If the coin lands heads move from θt-1 to θ*

• Otherwise, stay put.

• The result is a Markov chain (step t depends only on step t-1… not 
on prior steps).  And it converges on the posterior distribution.
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Simple Illustration

• Let’s illustrate MH via a simple example.

• “Target” density that we want to simulate:  the lognormal.

• We take logs so that we  add/subtract rather than multiply/divide

• “Target” “density”:
• As noted before, we can eliminate terms that cancel out

• Proposal densities:
• The proposal (μ*,σ*) is a standard normal step away from the current location.
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Random Walks with 4 Different Starting Points

• We estimate the 
lognormal density using 
4 separate sets of 
starting values.

• Data:  50 random draws 
from lognormal(9,2).
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Random Walks with 4 Different Starting Points

• After 10 iterations, the 
lower right chain is 
already in the right 
neighborhood.
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Random Walks with 4 Different Starting Points

• After 20 iterations, only 
the 3rd chain is still in the 
wrong neighborhood.
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Random Walks with 4 Different Starting Points

• After 50 iterations, all 4 
chains have arrived in 
the right neighborhood.
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Random Walks with 4 Different Starting Points

• By 500 chains, it 
appears that the burn-in 
has long since been 
accomplished.

• The chain continues to 
wander.

• The time the chain 
spends in a 
neighborhood 
approximates the 
posterior probability that 
(μ,σ) lies in this nbd. 
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In 3D

• The true lognormal 
parameters are: 

μ=9 and σ=2

• The MH algorithm yields an 
estimate of the posterior 
density:

• This density results from a 
diffuse prior

• It is based on the information 
available in the data.
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Metropolis-Hastings Results

• The true lognormal 
parameters are: 

μ=9 and σ=2

• The MH simulation is 
gives consistent results:

• Only the final 5000 of the 10000 
MH iterations were used to 
estimate μ,σ
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Metropolis-Hastings Results

• The true lognormal 
parameters are: 

μ=9 and σ=2

• Note the very rapid 
convergence despite 
unrealistic initial values.
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An Easier Way to Get the Same Result

• Call JAGS from within R
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Case Studies



Case Study #1
Fitting an Ambiguous Loss Model
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JAGS:  Just Another Gibbs Sampler

• Gibbs Sampling is a special case of Metropolis-Hastings sampling 
in which:

• Each random draw is always accepted (faster convergence)
• No need to specify a proposal density

• Sequentially take draws from the conditional distributions.  
Continue until the chain settles down.

• The open-source packages BUGS and JAGS implement Gibbs 
sampling.

• Specify the model in a high-level language
• Call from within R
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JAGS Case Study:  Pareto Data

• Suppose we are given data for 100 losses and are told that they 
represent losses in $1M’s for a new line of specialty insurance.

• We multiply the numbers by 10 for convenience:
• (round the numbers only for display purposes… not in the analysis)

• We are asked to estimate the 99th percentile Value at Risk (VaR).
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Exploratory Data Analysis

• Just to help visualize 
the data:

• Perform gamma MLE fit
• Create a QQ plot.

• Data doesn’t look 
terribly inconsistent 
with a gamma…

• … but is this like 
concluding that the 
coin is biased after 12 
tosses?
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Thinking More About the Problem

• The scale parameter λ of our gamma(δ,λ) model is proportional to 
the eα+β1X1+β2X2+… from a gamma GLM.

• We’re not given any covariates, but that doesn’t mean that 
different risks don’t have different expected loss amounts.

• So maybe we should let λ vary randomly: λ ~ gamma(α,θ)

• And since we are uncertain about the values of δ,α,θ, we should 
specify prior distributions for them.
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The Model

• We let λ vary randomly
• This is assuming that losses are generated from a mixture of processes, each 

with a different innate expected size of loss.
• Analogous to putting covariates in a Gamma GLM

• Other assumptions:
• If δ=1  gamma mixture of exponentials  Pareto(α,θ)
‒But rather than assume this, we put a diffuse distribution on δ.

• Informative prior on θ reflects overall scale of the data.
• Diffuse prior on α
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Results

• Well, this is nice:
• The 3 different random 

walks settled down after 
10,000 burn-in iterations
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Results

• Well, this is nice:
• The 3 different random 

walks settled down after 
10,000 burn-in iterations

• Recall δ=1 implies a 
gamma mixtures of 
exponentials… which is 
Pareto.
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Results

• Well, this is nice:
• The 3 different random 

walks settled down after 
10,000 burn-in iterations

• Recall δ=1 implies a 
gamma mixtures of 
exponentials… which is 
Pareto.

• The mean and variance of 
a Pareto (3,10) are 5 and 
33.3 respectively… close 
to the data’s sample 
averages.
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Results

• Well, this is nice:
• The 3 different random 

walks settled down after 
10,000 burn-in iterations

• Recall δ=1 implies a 
gamma mixtures of 
exponentials… which is 
Pareto.

• The mean and variance of 
a Pareto (3,10) are 5 and 
33.3 respectively… close 
to the data’s sample 
averages.

• And we get a 3D 
posterior distribution… 
reflecting our uncertainty.
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Now Simplify

• Let’s just assume that 
the data is Pareto 
(δ=1).

• Purely for illustration
• May be unjustified

• Rerunning the model 
yields broadly 
consistent results.
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Posterior Distribution VaR99 Estimates

• If we had settled for 
our initial Gamma MLE 
fit, our estimate would 
have likely been way 
too low. 

• Just reporting the VaR 
for a Pareto(3,10) fit 
doesn’t tell the whole 
story either.

• Parameter uncertainty 
results in widely 
divergent VaR estimates.

• In real life, the next step 
would be to specify more 
informative priors…
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Case Study  #2 
Workers Comp Claim Frequency
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Data and Problem

• We have 7 years of Workers Comp data
• For each of 7 years we are given payroll and claim count by class.
• Let’s build a Bayesian hierarchical Poisson GLM model on years 1-6 and 

compare the result with the actual claim counts from year 7.
• Data is from Start Klugman 1992 book on Bayesian Statistics for actuarial 

science.
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Exploratory Data Analysis

• The endgame is to build a Bayesian hierarchical GLM model.

• But in the spirit of data exploration, it makes sense to built empirical 
Bayes models first.

• This is essentially a Bühlmann-Straub type credibility model.
• This will help us get a feel for how much “shrinkage” (credibility-weighting) is 

called for. 
• Compare credibility weighted result with simply calculating empirical 6-year 

claim frequency by class.
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Shrinkage Effect of Hierarchical Model

• Top row:  estimated claim 
frequencies from un-
pooled model.

• Separately calculate 
#claims/payroll by class

• Bottom row:  estimated 
claim frequencies from 
Poisson hierarchical 
(credibility) model.

• Credibility estimates are 
“shrunk” towards the 
grand mean.
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Shrinkage Effect of Hierarchical Model

• Let’s plot the claim 
frequencies only for 
classes that experience a 
shrinkage effect is 5% or 
greater.

• Dotted line:  shrinkage 
between 5=10%.

• Solid line:  shrinkage > 10%
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Shrinkage Effect of Hierarchical Model

• The most extreme 
shrinkage occurs for 
class 61.

• Only 1 claim in years 3-6.
• But very low payroll results 

in a large pre-shrunk 
estimated frequency.
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Shrinkage Effect of Hierarchical Model

• Shrinkage also occurs for 
class 63.

• More payroll than class 61 
but similar logic.
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Now Specify a Fully Bayesian Model

• Here we specify a fully Bayesian model.
• Still Poisson regression with an offset (y[i] is claim count)
• Throw in a class-level covariate (relative “size” of the class).
• Replace year-7 actual values with missing values so that we model the year-7 

results and can compare actual with posterior credible interval.
• Very flexible framework… could add in time trend as next step.
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A Credible Result

• Let’s rank the top 30 
WC classes by the 
median of the posterior 
predictive density of 
year-7 claim count.

• 87% of the top 30 
classes have actual 
year-7 claim count that 
falls within the 90% 
posterior credible 
interval.

Top 30 WC Classes Ranked by Median Predicted Claim Count
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A Credible Result

• If we increase this to 
the top-80, the 
corresponding number 
drops to 74%.

Top 80 WC Classes Ranked by Median Predicted Claim Count

Year 7 Claim Count
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A Credible Result

• Now we look at the 
top-30, ranked in 
descending order by 
payroll.

• 83% of the top 30 
classes have actual 
year-7 claim count that 
falls within the 90% 
posterior credible 
interval.
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