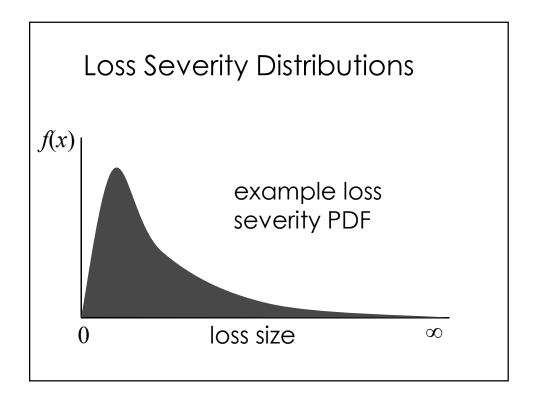
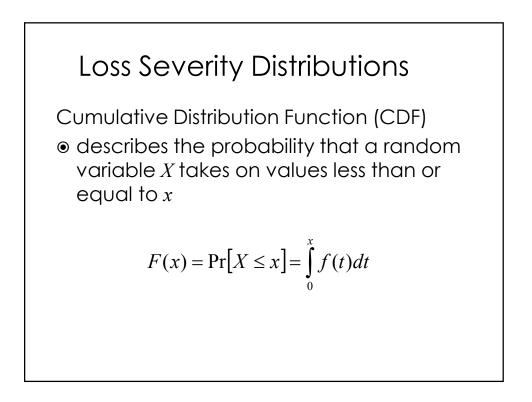
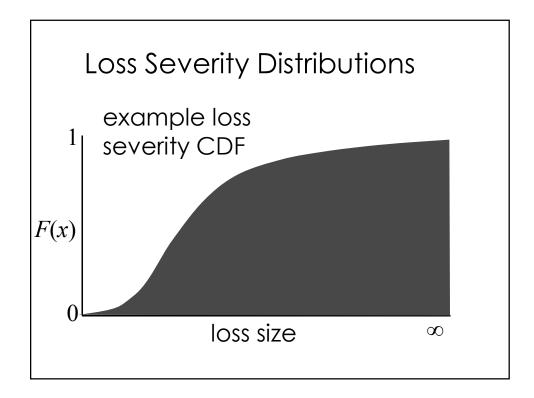
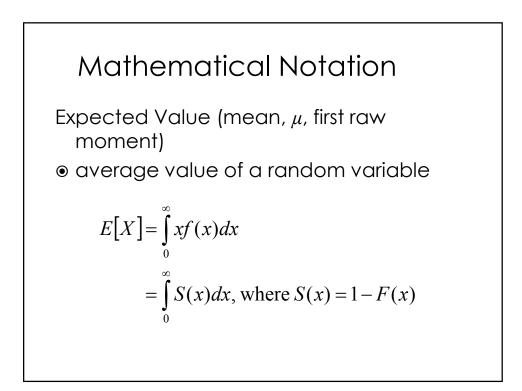
Jared Smollik FCAS, MAAA, CPCU Increased Limits & Rating Plans Division, ISO March 19, 2012

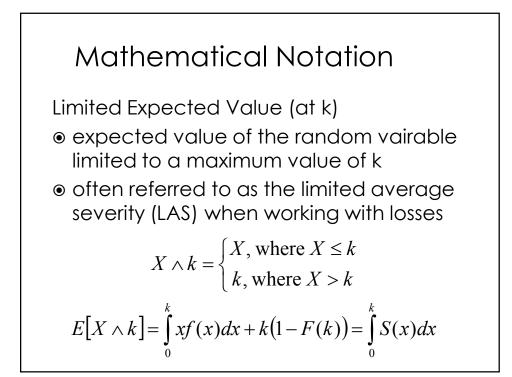
Agenda

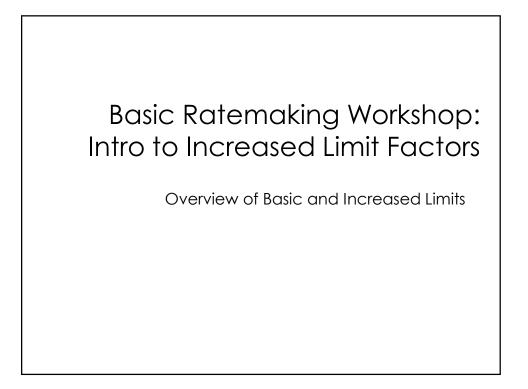

- Background and Notation
- Overview of Basic and Increased Limits
- Increased Limits Ratemaking
- Deductible Ratemaking
- Mixed Exponential Procedure (Overview)

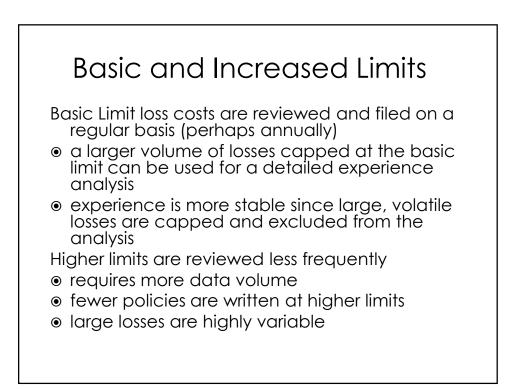

Background and Notation


Loss Severity Distributions

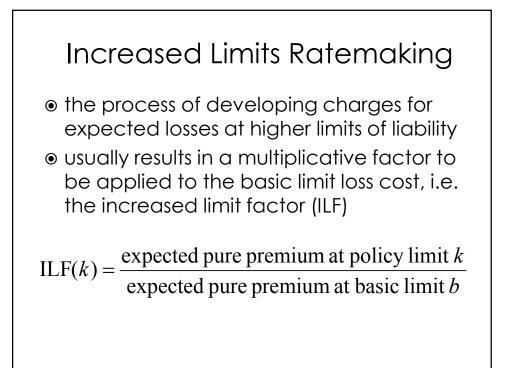

Probability Density Function (PDF) -f(x)

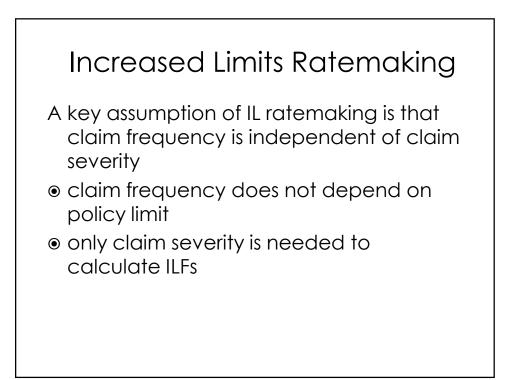

- describes the probability density of the outcome of a random variable *X*
- theoretical equivalent of a histogram of empirical data
- Loss severity distributions are skewed
- a few large losses make up a significant portion of the total loss dollars

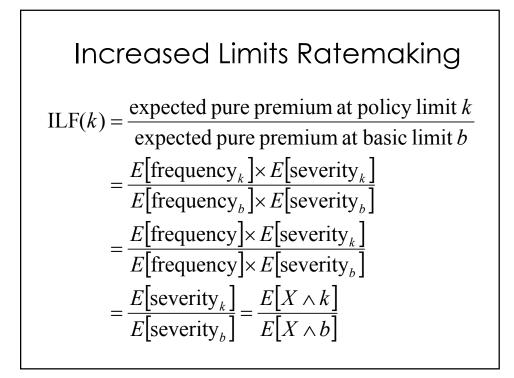


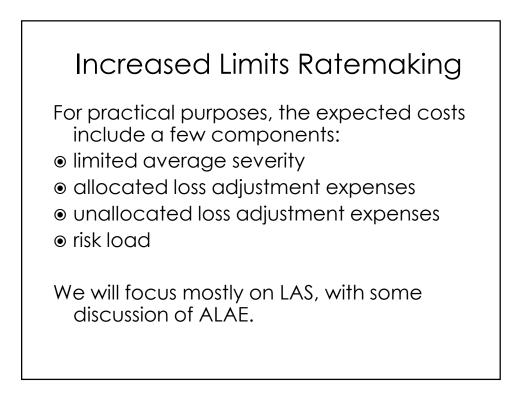


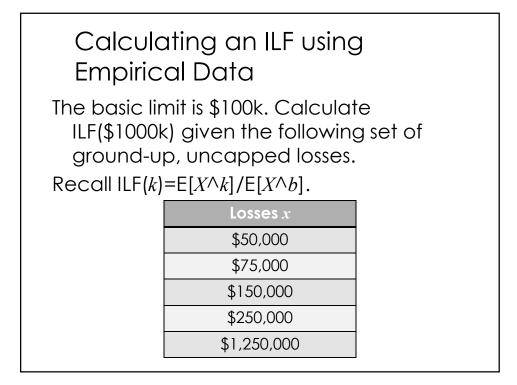
Basic and Increased Limits

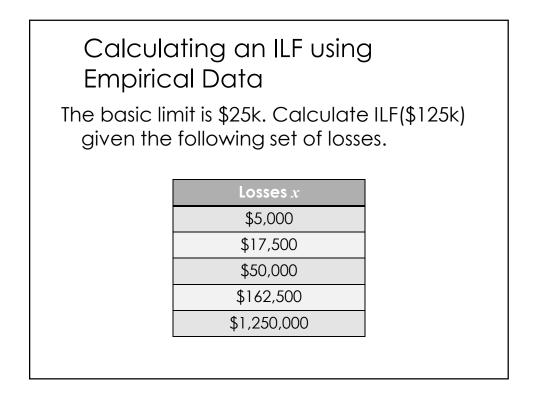

Different insureds have different coverage needs, so third-party liability coverage is offered at different limits.

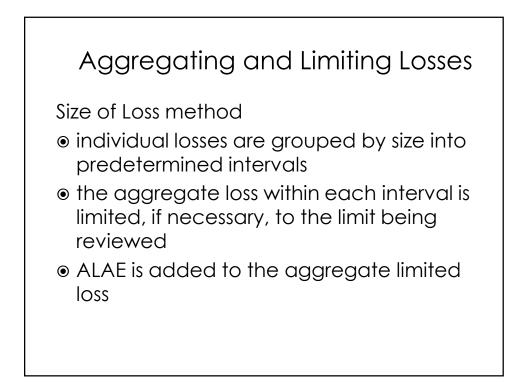

Typically, the lowest level of insurance offered is referred to as the basic limit and higher limits are referred to as increased limits.

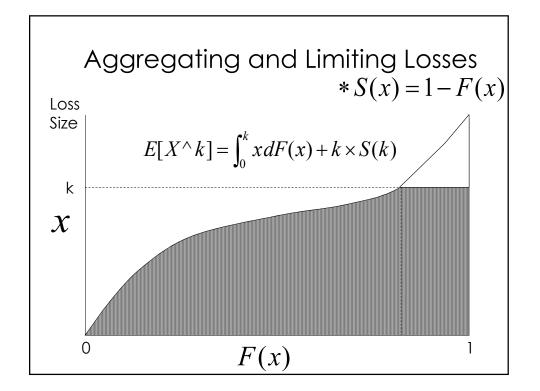


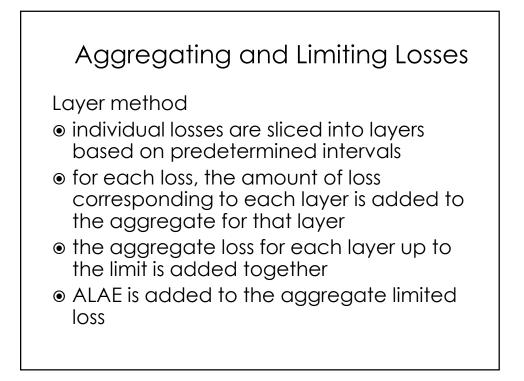

Increased Limits Ratemaking

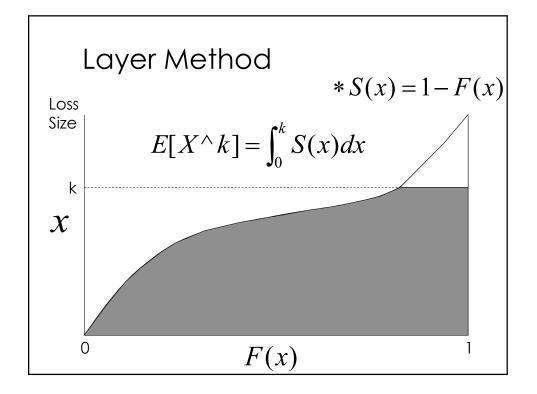

Increased Limits Ratemaking Basic Limit data aggregation Iosses are restated as if all policies were purchased at the basic limit basic limit is usually the financial responsibility limit or a commonly selected limit ALAE is generally uncapped Increased Limits data aggregation Iosses are limited to a higher limit ALAE generally remains uncapped








Calculati Empirical	ng an ILF usi Data	ng		
Losses x	min{x, \$100k}	min{ <i>x</i> , \$1000k}		
\$50,000	\$50,000	\$50,000		
\$75,000	\$75,000	\$75,000		
\$150,000	\$100,000	\$150,000		
\$250,000	\$100,000	\$250,000		
\$1,250,000	\$100,000	\$1,000,000		
$ILF(k) = E[X^k] / E[X^b]$ $E[X^{100k}] = $425,000/5 = $85,000$ $E[X^{1000k}] = $1,525,000/5 = $305,000$ $ILF($1000k) = E[X^{1000k}] / E[X^{100k}] = 3.59$				



Losses x	min{ <i>x</i> , \$25k}	min{ <i>x</i> , \$125k}
\$5,000	\$5,000	\$5,000
\$17,500	\$17,500	\$17,500
\$50,000	\$25,000	\$50,000
\$162,500	\$25,000	\$125,000
\$1,250,000	\$25,000	\$125,000
E[X^\$125k] = \$	97,500/5 = \$19,5 322,500/5 = \$6 X^\$125k]/E[X^\$	4,500

Size Method vs Layer Method

	Size Method	Layer Method
Advantages	•conceptually straightforward •data can be used in calculations immediately •more complicated integral is actually generally easier to calculate	•computationally simple for calculating sets of increased limit factors •no integration disadvantage when data is given numerically, which is generally the practical case
Disadvantages	•computationally intensive for calculating sets of increased limit factors	•unintuitive •data must be processed so that it can be used in calculations •S(x) is generally a more difficult function to integrate

Calculating an ILF using the Size Method

Individual Loss Intervals (basic limit is \$100k)		Aggregate Losses in Interval	Number of Claims in
Lower Bound	Upper Bound		Interval
\$1	\$100,000	\$25,000,000	1,000
\$100,001	\$250,000	\$75,000,000	500
\$250,001	\$500,000	\$60,000,000	200
\$500,001	\$1,000,000	\$30,000,000	50
\$1,000,001	8	\$15,000,000	10

$E[X \land k] = \frac{\text{losses on claims up to } k + k \times \text{number of claims exceeding } k}{\text{total number of claims}}$

Calculating an ILF using the Size Method

Individual Loss Intervals (basic limit is \$100k)		Aggregate Losses in Interval	Number of Claims in	
Lower Bound	Upper Bound		Interval	
\$1	\$100,000	\$25,000,000	1,000	
\$100,001	\$250,000	\$75,000,000	500	
\$250,001	\$500,000	\$60,000,000	200	
\$500,001	\$1,000,000	\$30,000,000	50	
\$1,000,001 ∞		\$15,000,000	10	

Calculate ILF(\$1000k).

Calculating an ILF using the Size Method

Individual Loss Intervals (basic limit is \$100k)		Aggregate Losses in Interval	Number of Claims in	
Lower Bound	Upper Bound		Interval	
\$1	\$50,000	\$8,400,000	200	
\$50,001	\$100,000	\$46,800,000	600	
\$100,001\$250,000\$250,001\$500,000		\$64,000,000	400	
		\$38,200,000	100	
\$500,001	∞	\$17,000,000	20	
Calculate ILF($\$250k$) and ILF($\$500k$). E[X^ $\$100k$] = [$\$55.2M + 520 \times \$100k$]/1,320 = $\$81,212$ E[X^ $\$250k$] = [$\$119.2M + 120 \times \$250k$]/1,320 = $\$113,030$ ILF($\$250k$) = E[X^ $\$250k$]/E[X^ $\$100k$] = 1.39 E[X^ $\$500k$] = [$\$157.4M + 20 \times \$500k$]/1,320 = $\$126,818$ ILF($\$500k$) = E[X^ $\$500k$]/E[X^ $\$100k$] = 1.56				

Calculating an ILF using the Size	
Method with ALAE	

Individual Loss Intervals (basic limit is \$100k)		Agg. ALAE on Claims in	Number of Claims in
U. Bound	Interval	Interval	Interval
\$100,000	\$16,000,000	\$100,000	200
\$300,000	\$42,000,000	\$500,000	350
\$500,000	\$36,000,000	\$800,000	90
∞	\$3,000,000	\$200,000	5
	t is \$100k) U. Bound \$100,000 \$300,000 \$500,000	t is \$100k) Losses in Interval U. Bound \$100,000 \$100,000 \$16,000,000 \$300,000 \$42,000,000 \$500,000 \$36,000,000	t is \$100k) Losses in Interval on Claims in Interval \$100,000 \$16,000,000 \$100,000 \$300,000 \$42,000,000 \$500,000 \$500,000 \$36,000,000 \$800,000

 $E[X \land k] = \frac{\text{losses up to } k + k \times \text{claims exceeding } k + \text{total ALAE}}{\text{total claims}}$

Meth Individual L	nod wit	an ILF h ALAE _{Aggregate}	using th	Number of
(basic lim L. Bound	it is \$100k) U. Bound	Losses in Interval	on Claims in Interval	Claims in Interval
\$1	\$100,000	\$16,000,000	\$100,000	200
\$100,001	\$300,000	\$42,000,000	\$500,000	350
\$300,001	\$500,000	\$36,000,000	\$800,000	90
\$500,001	∞	\$3,000,000	\$200,000	5
Calculate ILF($\$500k$). E[X^ $\$100k$] = [$\$16M + 445 \times \$100k + \$1600k$]/645 = $\$96,279$ E[X^ $\$500k$] = [$\$94M + 5 \times \$500k + \$1600k$]/645 = $\$152,093$ ILF($\$500k$) = E[X^ $\$500k$]/E[X^ $\$100k$] = 1.58				

Calculating an ILF using the Layer Method

Loss Layer (basic limit is \$50k)		Aggregate Losses in Layer	Claims Reaching Layer
Lower Bound	Upper Bound		
\$1	\$50,000	\$3,800,000	100
\$50,001	\$100,000	\$2,000,000	50
\$100,001	\$250,000	\$2,500,000	25
\$250,001	8	\$4,000,000	10

$$E[X \land k] = \frac{\text{sum of all losses in each layer up to } k}{\text{total claims}}$$

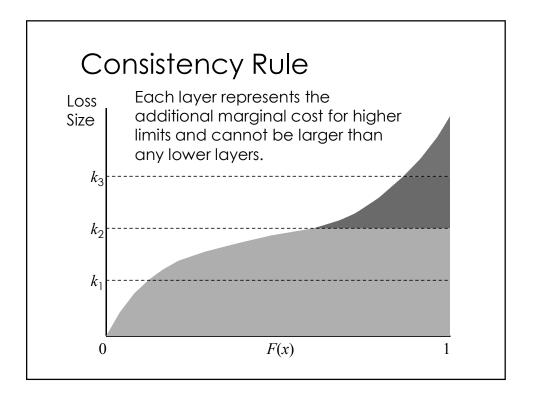
Loss Layer (basic limit is \$50k)		Aggregate Losses in Layer	Claims Reaching Layer
Lower Bound	Upper Bound		
\$1	\$50,000	\$3,800,000	100
\$50,001	\$100,000	\$2,000,000	50
\$100,001	\$250,000	\$2,500,000	25
\$250,001	∞	\$4,000,000	10
E[X^\$250k] =	5(\$250k). \$3,800,000 / 10 (\$3.8M + \$2.0/ 5[X^\$250k]/ E[>	M + \$2.5M)/10	0 = \$83,000

Calculating an ILF using the
Layer Method with ALAE

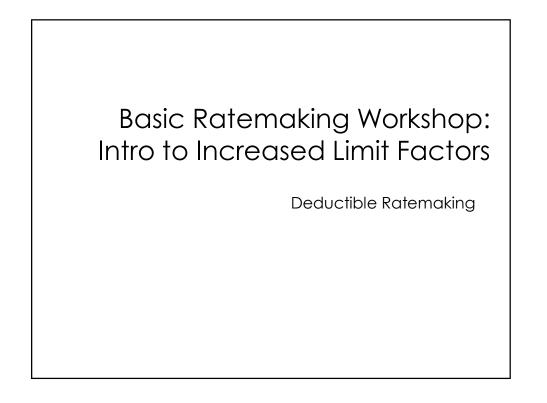
Loss Layer (basic limit is \$50k)		Aggregate Losses in Layer	Claims Reaching Layer
Lower Bound	Upper Bound	(ALAE = \$1.1M)	
\$1	\$50,000	\$39,500,000	1,000
\$50,001	\$100,000	\$32,000,000	800
\$100,001	\$250,000	\$9,500,000	100
\$250,001	8	\$14,200,000	10

 $E[X \land k] = \frac{\text{sum of all losses in each layer up to } k + \text{total ALAE}}{\text{total claims}}$

	Calculating an ILF using the Layer Method				
	Loss Layer (basic limit is \$50k)		Aggregate Losses in Layer	Claims Reaching Layer	
	Lower Bound	Upper Bound	(ALAE = \$1.1M)		
	\$1	\$50,000	\$39,500,000	1,000	
	\$50,001	\$100,000	\$32,000,000	800	
	\$100,001	\$250,000	\$9,500,000	100	
	\$250,001	∞	\$14,200,000	10	
E	Calculate ILF($$250k$). E[X^ $$50k$] = ($$39.5M + $1.1M$) / 1000 = \$40,600 E[X^ $$250k$]=($$39.5M + $32.0M + $9.5M + $1.1M$)/1000=\$82,100 ILF($$250k$) = E[X^ $$250k$]/ E[X^ $$50k$] = 2.02				


Consistency Rule

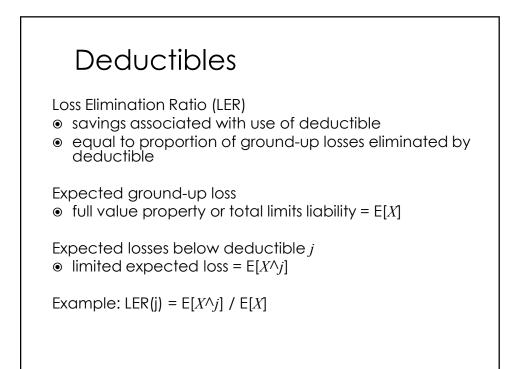
Consistency Rule


The marginal premium per dollar of coverage should decrease as the limit of coverage increases.

- ILFs should increase at a decreasing rate
- expected costs per unit of coverage should not increase in successively higher layers
- Inconsistency can indicate the presence of anti-selection
- higher limits may influence the size of a suit, award, or settlement

Consistency Rule			
Limit (\$000s)	ILF	ΔILF/Δlimit	
25	1.00	_	
50	1.60	0.0240	
100	2.60	0.0200	
250	6.60	0.0267 👞	
500	10.00	0.0136	
inconsistency at \$250k limit			

Consistency Rule			
Limit (\$000s)	ILF	ΔILF/Δlimit	
10	1.000	_	
25	1.195	0.0130	
35	1.305	0.0110	
50	1.385	0.0053	
75	1.525	*0.0056*	
100	1.685	*0.0064*	
125	1.820	*0.0054*	
150	1.895	0.0030	
175	1.965	0.0028	
200	2.000	0.0014	
250	2.060	0.0012	
300	2.105	0.0009	
400	2.245	*0.0014*	
500	2.315	0.0007	

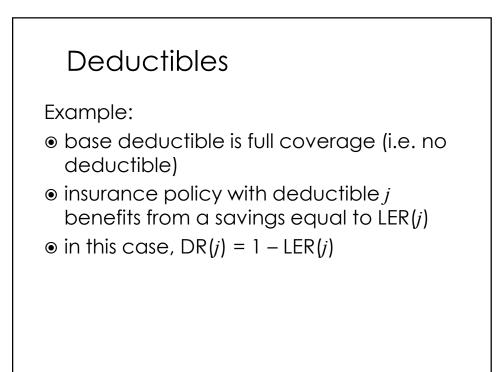


Deductibles

- Deductible ratemaking is closely related to increased limits ratemaking
- based on the same idea of loss layers
- difference lies in the layers considered

We will focus on the fixed dollar deductible

- most common
- simplest
- same principles can be applied to other types of deductibles

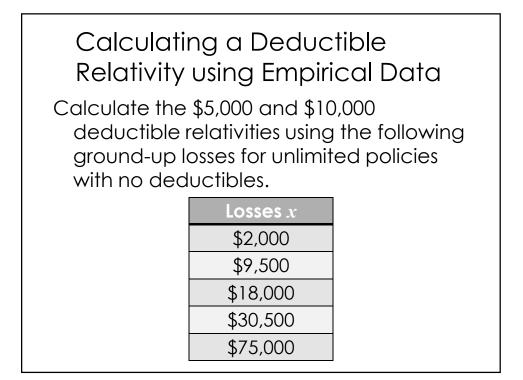


Deductibles

- The LER is used to derive a deductible relativity (DR)
- deductible analog of an ILF
- factor applied to the base premium to reflect a deductible

Factor depends on:

- LER of the base deductible
- LER of the desired deductible

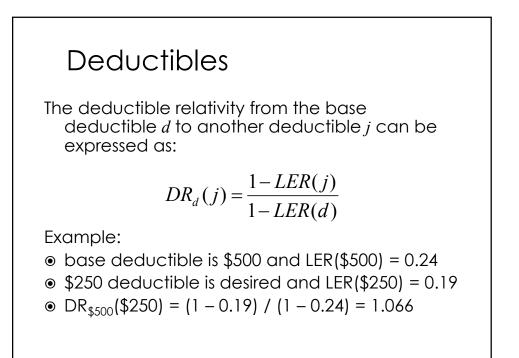


Deductibles

If the full coverage premium for auto physical damage is \$1,000 and the customer wants a \$500 deductible, we can determine the \$500 deductible premium if we know LER(\$500). Assume LER(\$500) = 31%.

• DR(\$500) = 1 - 0.31 = 0.69

\$500 deductible premium = 0.69 × \$1,000
 = \$690



Calculating a Deductible Relativity using Empirical Data

min{ <i>x,</i> \$5k}	min{x, \$10k}
\$2,000	\$2,000
\$5,000	\$9,500
\$5,000	\$10,000
\$5,000	\$10,000
\$5,000	\$10,000
	\$5,000 \$5,000 \$5,000

DR(\$5k) = 1 - LER(\$5k) = 0.837 LER(\$10k) = E[X^\$10k] / E[X] = 0.307 DR(\$10k) = 1 - LER(\$10k) = 0.693

Deductibles The prior examples were simplistic because the base deductibles were full coverage. A more generalized formula can be used to calculate deductible relativities where the bases deductible is non-zero. We divide out the effect of the base deductible and multiply by the effect of the desired deductible. In other words, go back to the full coverage case and work from there.

Deductibles				
The base deductible for this coverage is \$500 and the unlimited average severity is \$5,000. Calculate the \$0, \$250, \$500, and \$1000 deductible relativities.				
j	E[X <i>^j</i>]	LER(j)	DR _{\$500} (j)	
\$O	\$0	\$0 / \$5000 = 0.000	(1 - 0.000) / (1 - 0.094) = 1.104	
\$250	\$240	\$240 / \$5000 = 0.048	(1 - 0.048) / (1 - 0.094) = 1.051	
\$500	\$470	\$470 / \$5000 = 0.094	(1 - 0.094) / (1 - 0.094) = 1.000	
\$1,000	\$900	\$900 / \$5000 = 0.180	(1 - 0.180) / (1 - 0.094) = 0.905	

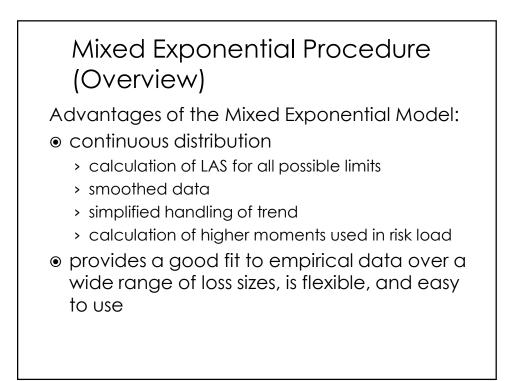
Mixed Exponential Procedure

Problems Associated with Calculating ILFs and DRs

- data sources include several accident years
 - > trend
 - > loss development
- data is sparse at higher limits

Fitted Distributions

Data can be used to fit the severity function to a probability distribution


Addresses some concerns

- ILFs can be caluclated for all policy limits
- empirical data can be smoothed
- trend
- payment lag

ISO has used different distributions, but currently uses the mixed exponential model

- Use paid (settled) occurrences from statistical plan data and excess and umbrella data
- Fit a mixed exponential distribution to the lag-weighted occurrence size distribution from the data
- Produces the limited average severity component from the resulting distribution

Mixed Exponential Procedure (Overview)

● trend

- construction of the empirical survival distribution
- payment lag process
- \odot tail of the distribution
- fitting a mixed exponential distribution
- final limited average severities

Questions and Answers

Jared Smollik

FCAS, MAAA, CPCU Manager-Actuarial Increased Limits & Rating Plans Division Insurance Services Office, Inc.

201-469-2607 jsmollik@iso.com