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ANTITRUST Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and 
spirit of the antitrust laws.  Seminars conducted under the auspices of the CAS 
are designed solely to provide a forum for the expression of various points of view 
on topics described in the programs or agendas for such meetings.  

Under no circumstances shall CAS seminars be used as a means for competing 
companies or firms to reach any understanding – expressed or implied – that 
restricts competition or in any way impairs the ability of members to exercise 
independent business judgment regarding matters affecting competition.  

It is the responsibility of all seminar participants to be aware of antitrust 
regulations, to prevent any written or verbal discussions that appear to violate 
these laws, and to adhere in every respect to the CAS antitrust compliance policy.  



2

Outline
 Overview of Statistical Modeling
 Linear Models

– ANOVA
– Simple Linear Regression
– Multiple Linear Regression
– Categorical Variables
– Transformations

 Generalized Linear Models
– Why GLM?
– From Linear to GLM
– Basic Components of GLM’s
– Common GLM structures

 References
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Basic Linear Model Structures - Overview

 Simple ANOVA : 
– Yij = µ + eij or more generally Yij = µ + ψi + eij 

– In Words: Y is equal to the mean for the group with 
random variation and possibly fixed variation

– Traditional Classification Rating – Group Means
– Assumptions: errors independent & follow N(0,σe2 ) 
– ∑ ψi = 0 i = 1,…..,k (fixed effects model)
– ψi ~ N(0,σψ2 ) (random effects model) 



5

 Simple Linear Regression :  yi = bo + b1xi + ei

– Assumptions:

• linear relationship 

• errors independent and follow N(0,σe2 ) 

 Multiple Regression : yi = bo + b1x1i + ….+ bnxni + ei

– Assumptions: same, but with n independent random variables (RV’s)

 Transformed Regression : transform x, y, or both; 
maintain errors are N(0,σe2 )

yi = exp(xi)  log(yi) = xi

Basic Linear Model Structures - Overview
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Simple Regression (special case of multiple regression)

 Model: Yi = bo + b1Xi + ei

– Y is the dependent variable explained by X, the 
independent variable

– Y could be Pure Premium, Default Frequency, etc
– Want to estimate relationship of how Y depends on X 

using observed data 
– Prediction: Y= bo + b1 x* for some new x* (usually 

with some confidence interval)
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– A formalization of best fitting a line through data with a ruler and a pencil
– Correlative relationship
– Simple e.g. determine a trend to apply

Simple Regression

Mortgage Insurance Average Claim Paid Trend
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Regression – Observe Data
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Regression – Observe Data

Foreclosure Hazard vs Borrower Equity Position
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Regression – Observe Data

Foreclosure Hazard vs Borrower Equity Position <20%
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 How much of the sum of squares is explained by the regression? 

SS = Sum Squared Errors

SSTotal = SSRegression + SSResidual (Residual also called Error)

SSTotal = ∑ (yi – y )2 = 53.8053

SSRegression =  b1 est*[∑ xi yi -1/n(∑ xi )(∑ yi)] = 52.7482

SSResidual = ∑ (yi – yi est)2

= SSTotal – SSRegression

1.0571 = 53.8053 – 52.742 

Simple Regression
ANOVA

df SS MS F Significance F
Regression 1 52.7482 52.7482 848.2740 <0.0001
Residual 17 1.0571 0.0622
Total 18 53.8053
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Simple Regression 

 MS = SS divided by df

 R2: (SS Regression/SS Total)

0.9804 = 52.7482 / 53.8053

– percent of variance explained

 F statistic: (MS Regression/MS 
Residual)

 significance of regression: 

– F tests Ho: b1=0 v. HA: b1≠0

ANOVA
df SS MS F Significance F

Regression 1 52.7482 52.7482 848.2740 <0.0001
Residual 17 1.0571 0.0622
Total 18 53.8053

Regression Statistics
Multiple R 0.9901
R Square 0.9804
Adjusted R Square 0.9792
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Simple Regression 

T statistics: (bi est – Ho(bi)) / s.e.(bi est)

• significance of individual coefficients 

• T2 = F for b1 in simple regression

• (-29.1251)2 = 848.2740

• F in multiple regression tests that at least one coefficient is 
nonzero. For the simple case, at least one is the same as the 
entire model.  F stat tests the global null model.

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 3.3630 0.0730 46.0615 0.0000 3.2090 3.5170 3.2090 3.5170
X -0.0828 0.0028 -29.1251 0.0000 -0.0888 -0.0768 -0.0888 -0.0768
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Residuals Plot
 Looks at (yobs – ypred) vs. ypred

 Can assess linearity assumption, constant variance of errors, and look for outliers
 Standardized Residuals (raw residual scaled by standard error) should be random 

scatter around 0, standard residuals should lie between -2 and 2
 With small data sets, it can be difficult to assess assumptions

Plot of Standardized Residuals
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Normal Probability Plot of Residuals
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Standard Residuals

Normal Probability Plot
 Can evaluate assumption ei ~ N(0,σe2 )

– Plot should be a straight line with intercept µ and slope σe2 

– Can be difficult to assess with small sample sizes
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Residuals
 If absolute size of residuals increases as predicted value increases, may 

indicate nonconstant variance

 May indicate need to transform dependent variable

 May need to use weighted regression

 May indicate a nonlinear relationship

Plot of Standardized Residuals
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Distribution of Observations
 Average claim amounts for Rural drivers are normally distributed as are average claim 

amounts for Urban drivers

 Mean for Urban drivers is twice that of Rural drivers

 The variance of the observations is equal for Rural and Urban

 The total distribution of average claim amounts across Rural and Urban is not Normal 
– here it is bimodal

Distribution of Individual Observations

Rural Urban

µR
µU
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Distribution of Observations
 The basic form of the regression model is Y = bo + b1X + e

 µi = E[Yi] = E[bo + b1Xi + ei] = bo + b1Xi + E[ei] = bo + b1Xi

 The mean value of Y, rather than Y itself, is a linear function of X

 The observations Yi are normally distributed about their mean µi   Yi ~ N(µi , σe2)

 Each Yi can have a different mean µi but the variance σe2 is the same for each 
observation

X1 X2

Line Y = bo + b1X

bo + b1X1

bo + b1X2

X

Y
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Multiple Regression (special case of a GLM)
 Y = β0 + β1X1 + β2X2 + … + βnXn + ε
 E[Y] = βX

β is a vector of the parameter coefficients
Y is a vector of the dependent variable
X is a matrix of the independent variables

– Each column is a variable
– Each row is an observation

 Same assumptions as simple regression
1) model is correct (there exists a linear relationship)
2) errors are independent 
3) variance of ei constant
4) ei ~ N(0,σe2 )

 Added assumption the n variables are independent
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Multiple Regression
 Uses more than one variable in regression model 

– R-sq always goes up as add variables

– Adjusted R-Square puts models on more equal footing

– Many variables may be insignificant

 Approaches to model building

– Forward Selection - Add in variables, keep if “significant”

– Backward Elimination - Start with all variables, remove if 
not “significant”

– Fully Stepwise Procedures – Combination of Forward 
and Backward
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Multiple Regression
 Goal : Find a simple model that explains things well 

with assumptions reasonably satisfied

 Cautions:

– All predictor variables assumed independent
• as add more, they may not be

• multicollinearity— linear relationships among the X’s

– Tradeoff: 

• Increase # of parameters (1 for each variable in 
regression)  lose degrees of freedom (df)

• keep df as high as possible for general 
predictive power  problem of over-fitting
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Multiple Regression
 Model: Claim Rate = f (Loan-to-Value (LTV), Delinquency Status, Home Price Appreciation (HPA))

 Degrees of freedom ~ # observations - # parameters

 Any parameter with a t-stat with absolute value less than 2 is not significant
SUMMARY OUTPUT

Regression Statistics
Multiple R 0.97
R Square 0.94
Adjusted R Square 0.94
Standard Error 0.05
Observations 586

ANOVA
df SS MS F Significance F

Regression 10 17.716 1.772 849.031 < 0.00001
Residual 575 1.200 0.002
Total 585 18.916

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 1.30 0.03 41.4 0.00 1.24 1.36
ltv85 -0.10 0.01 -12.9 0.00 -0.11 -0.09
ltv90 -0.07 0.01 -9.1 0.00 -0.08 -0.06
ltv95 -0.04 0.01 -9.1 0.00 -0.05 -0.03
ltv97 -0.02 0.01 -6.0 0.00 -0.03 -0.01
ss30 -0.75 0.01 -55.3 0.00 -0.77 -0.73
ss60 -0.61 0.01 -56.0 0.00 -0.63 -0.59
ss90 -0.45 0.01 -53.5 0.00 -0.47 -0.43
ss120 -0.35 0.01 -40.1 0.00 -0.37 -0.33
ssFCL -0.24 0.01 -22.8 0.00 -0.26 -0.22
HPA -0.48 0.03 -18.0 0.00 -0.53 -0.43

T-stats are also used for evaluating significance of coefficients in GLM’s
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Multiple Regression
 Residuals Plot

Standard Residual vs Predicted Claim Rate
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 Residual Plots are also used to evaluate fits of GLM’s
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Normal Probability Plot
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Multiple Regression
 Normal Probability Plot

 Percentile or Quantile Plots are also used to evaluate fits of GLM’s
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Categorical Variables (used in LM’s and GLM’s)
 Explanatory variables can be discrete or continuous
 Discrete variables generally referred to as “factors”
 Values each factor takes on referred to as “levels”
 Discrete variables also called Categorical variables
 In the multiple regression example given, all variables were categorical 

except HPA
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Categorical Variables
 Assign each level a “Dummy” variable

– A binary valued variable
– X=1 means member of category and 0 otherwise
– Always a reference category 

• defined by being 0 for all other levels

– If only one factor in model, then reference level will be intercept of regression 
– If a category is not omitted, there will be linear dependency 

• “Intrinsic Aliasing”
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Categorical Variables
 Example: Loan – To – Value (LTV)

– Grouped for premium – 5 Levels
• <=85%, LTV85
• 85.01% - 90%, LTV90
• 90.01% - 95%, LTV95
• 95.01% - 97%, LTV97
• >97% Reference

– Generally positively correlated with claim frequency
– Allowing each level it’s own dummy variable allows for the possibility 

of non-monotonic relationship
– Each modeled coefficient will be relative to reference level

X1 X2 X3 X4
Loan # LTV LTV85 LTV90 LTV95 LTV97

1 97 0 0 0 1
2 93 0 0 1 0
3 95 0 0 1 0
4 85 1 0 0 0
5 100 0 0 0 0

Design 
Matrix
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Transformations
 A possible solution to nonlinear relationship or unequal variance of errors
 Transform predictor variables, response variable, or both
 Examples:

– Y′ = log(Y)

– X′ = log(X)

– X′ = 1/X

– Y′ = √Y

 Substitute transformed variable into regression equation

 Maintain assumption that errors are N(0,σe2 )
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Why GLM?
 What if the variance of the errors increases with predicted values?

– More variability associated with larger claim sizes

 What if the values for the response variable are strictly positive?
– assumption of normality violates this restriction

 If the response variable is strictly non-negative, intuitively the 
variance of Y tends to zero as the mean of X tends to zero

– Variance is a function of the mean (poisson, gamma)

 What if predictor variables do not enter additively?
– Many insurance risks tend to vary multiplicatively with rating factors 
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Classic Linear Model to Generalized Linear Model

 LM:
– X is a matrix of the independent variables

• Each column is a variable

• Each row is an observation

– β is a vector of parameter coefficients

– ε is a vector of residuals

 GLM: 
– X, β same as in LM

– ε is still vector of residuals

– g is called the “link function”

LM
Y = β X+ ε

E[Y] = β X
E[Y] = µ = η

ε ~ N(0,σe2 )

GLM
g (µ) = η = β X
E[Y] = µ = g -1(η)

Y = g -1(η) + ε

ε ~ exponential family
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Classic Linear Model to Generalized Linear Model
 LM:

1) Random Component : Each component of Y is independent and normally distributed.  
The mean µi allowed to differ, but all Yi have common variance σe2

2) Systematic Component : The n covariates combine to give the “linear predictor”

η = β X
3) Link Function : The relationship between the random and systematic components is 

specified via a link function.  In linear model, link function is identity fnc.

E[Y] = µ = η

 GLM: 

1) Random Component : Each component of Y is independent and from one of the 
exponential family of distributions

2) Systematic Component : The n covariates are combined to give the “linear predictor”

η = β X
3) Link Function : The relationship between the random and systematic components is 

specified via a link function g, that is differentiable and monotonic

E[Y] = µ = g -1(η)
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Linear Transformation versus a GLM
 Linear transformation uses transformed variables

– GLM transforms the mean

– GLM not trying to transform Y in a way that approximates uniform variability

 The error structure
– Linear transformation retains assumption Yi ~ N(µi , σe2)

– GLM relaxes normality

– GLM allows for non-uniform variance

– Variance of each observation Yi is a function of the mean E[Yi] = µi

X1 X2
X

Y Linear
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The Link Function
 Example: the log link function g(x) = ln (x)  ; g -1 (x) = ex

 Suppose Premium (Y) is a multiplicative function of Policyholder Age 
(X1) and Rating Area (X2) with estimated parameters β1 , β2

– ηi = β1 X1 + β2 X2

– g(µi) = ηi

– E[Yi] = µi = g -1(ηi)
– E[Yi] = exp (β1 X1 + β2 X2)
– E[Y] = g -1(β X)

– E[Yi] = exp (β1 X1) • exp(β2 X2) = µi

– g(µi) = ln [exp (β1 X1) • exp(β2 X2) ] = ηi = β1 X1 + β2 X2

– The GLM here estimates logs of multiplicative effects
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Examples of Link Functions

 Identity
– g(x) = x g -1 (x) = x additive rating plan

 Reciprocal
– g(x) = 1/x g -1 (x) = 1/x

 Log
– g(x) = ln(x) g -1 (x) = ex multiplicative rating plan

 Logistic
– g(x) = ln(x/(1-x))  g -1 (x) = ex/(1+ ex)



35

Error Structure
 Exponential Family

– Distribution completely specified in terms of its mean and variance

– The variance of Yi is a function of its mean E[Yi] = µi

– Var (Yi) = φ V(µi) / ωi 

– V(µ) structure specifies the distribution of Y, but 

– V(µ), the variance function, is not the variance of Y

– φ is a parameter that scales the variance 

– ωi is a constant that assigns a weight, or credibility, to observation i
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Error Structure
 Members of the Exponential Family

– Normal (Gaussian) -- used in classic regression

– Poisson (common for frequency)

– Binomial

– Negative Binomial

– Gamma (common for severity)

– Inverse Gaussian

– Tweedie (common for pure premium) 

• aka Compound Gamma-Poisson Process

– Claim count is Poisson distributed

– Size-of-Loss is Gamma distributed
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General Examples of Error/Link Combinations

 Traditional Linear Model
– response variable: a continuous variable
– error distribution: normal
– link function: identity

 Logistic Regression
– response variable: a proportion
– error distribution: binomial
– link function: logit

 Poisson Regression in Log Linear Model
– response variable: a count
– error distribution: Poisson
– link function: log

 Gamma Model with Log Link
– response variable: a positive, continuous variable
– error distribution: gamma
– link function: log
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Specific Examples of Error/Link Combinations

Observed 
Response

Link Fnc Error Structure Variance Fnc

Claim Frequency Log Poisson µ

Claim Severity Log Gamma µ2

Pure Premium Log Tweedie µp (1<p<2)

Retention Rate Logit Binomial µ(1-µ)
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