
3/15/2012

1

Introduction to

CAS RPM Seminar
March 19, 2012

Steve Berman, FCAS, MAAA
Jim Guszcza, FCAS, MAAA

1

1. Yes
2. No

Poll – Are You Sticking Around for Part 2?

3/15/2012

2

2

1. Isn’t that the 16th letter of the alphabet?
2. Something – I just installed it….
3. Spent a little time, looking for more
4. Occasional User
5. Power User (e.g. Jim Guscsza!)

Poll – How Much Do You Know About R?

R Background

3/15/2012

3

4

R Background

R is an open-source, object-oriented statistical programming language

• History:
– R is based on the S statistical programming language developed

by John Chambers at Bell Labs in the 1980’s
– The commercial package S-plus is based on the S language
– R is an open-source implementation of the S language
– Developed by Robert Gentlemen and Ross Inhaka in New Zealand
– At some point rewritten in C

• Features:
– R is a high-level, object-oriented programming environment
– R has advanced graphical capabilities
– Statisticians around the world contribute add-on packages…

therefore:

5

R Evolution

• S is the original
language

• S-plus is a commercial
implementation of S

• R is an open-source
implementation of S

• R is very similar to,
but not identical with,
other implementations
of S

3/15/2012

4

6

Facets of R

• In a recent article John Chambers discussed 6 “Facets of R”
1.An interface to computational procedures of many kinds
2. Interactive, hands-on in real time
3.Functional in its model of programming
4.Object-oriented, “everything is an object”
5.Modular, built from standardized pieces
6.Collaborative, a world-wide, open-source effort

• Interactive interface: Chambers was influenced by APL
– One of the rare interactive scientific computing environments
– Gives user ability to express novel computations
– Heavy emphasis on matrices and arrays
– But: unlike R, APL had no interface to procedures

• In the days before spreadsheets, APL was very popular in the
actuarial community

“Facets of R”, John M. Chambers, The R Journal Vol. 1/1, May 2009

7

Modular and Collaborative: A Network ExteRnality

• Hal Varian’s “giant” has grown at
an exponential rate.

• The open-source nature of R has
encouraged top researchers from
around the world to contribute
new, often highly advanced,
packages.

• Result: a powerful “network
effect”.
– The value of a product increases as

more people use it.

• R has become something like the
Wikipedia of the statistics world.

3/15/2012

5

8

Growing interest in R

• August 2006

9

Growing interest in R

• November 2006
http://www.casact.org/newslette

r/index.cfm?fa=viewart&id=5
311

3/15/2012

6

10

Growing interest in R

• November 2008 – CAS Annual Meeting, Seattle

11

Growing interest in R

• January 2009
http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?_r=1&pagewanted=print

3/15/2012

7

12

Growing interest in R

• April 2009
http://www.act

uaries.org.u
k/media_ce
ntre/news_
stories/200
9/april/r_yo
u_ready

• Interest in
the UK
actuarial
community

13

On to Bigger Things?

• A company that aspires to be to R what Redhat is to Linux
• Enterprise versions of R

3/15/2012

8

14

Installing R

• Go to http://cran.r-project.org/
• Or just type “R” into Google and click “I feel lucky”

• Click on “Download CRAN” on the left of the screen
• Click on one of the USA CRAN mirror sites
• Click on “Windows (95 and later)”
• Click on “base”
• Right-click on R-2.14.1-win32.exe (or latest version)

• “Save target as” into any directory

• After you’ve downloaded this setup program, double-click on it
and follow the instructions

• For those with permissions issues, follow the instructions at
http://personal.bgsu.edu/~mrizzo/Rmisc/usbR.htm to install on
a flash drive

15

Add-on Packages

• Click on “Packages”
– Select “Install Package(s)

• Select a CRAN mirror near you

3/15/2012

9

16

Add-on Packages

• “Packages” window will appear
• Select “MASS” and click OK

• MASS stands for Modern Applied
Statistics in S

• By Venables and Ripley
• … add anything else you like.

• It’s all free
• There are thousands of add-on

packages available

R – Basic Elements

RGui Vectors
Executing code Matrices
Functions Data Frames
Assignments Controls
Getting Help

3/15/2012

10

18

Getting Started with R

• Double-click on the “R” icon to start the program
• You will see the Console screen. Code can be typed in here and

run immediately

Note: you can always click ctrl-L to clear the
screen

19

R Basics - Packages

• Test to see whether your additional libraries were successfully
added.

• Type “library(MASS)”
– library function loads in installed package into your current R session
– All elements of package available until session closed

– Note: R is case-sensitive!
• If there are no error messages you’re ok
• Type “library()” to see list of currently installed packages

3/15/2012

11

20

R Basics – Command Line

• This screen gives you the “command line”.
– Type commands at the red “>”

• You can use R as a calculator using standard operators
– Type “2+3” at the command line and hit enter
– Similarly “2-3”, “2*3”, “2/3”, “2^3” (or “2**3”)

• Use UP arrow at prompt to bring back previously submitted
lines

21

Scripts

• Entering in codes one line at a time gets tiring! And not very
reusable, either

• Scripts allow you to save code and load later
• Select File / New script to bring up a scripting window, and

start entering code
• Use Windows to flip between scripts and console, or Tile them

both on screen
• Can run single lines of code, blocks of code, or entire scripts
• Ctrl-L, Ctrl-A, Ctrl-R combo (clear, select all, run)

3/15/2012

12

22

Interactive vs. Batch Mode

• At least three ways to run R
• Executing code from the Console Window or from a script is

“Interactive Mode”
– Only one stream can be running at a time
– Lots of flexibility in what you want to run and the order
– Can get intermediate results
– Good when debugging

• Can run from a Command prompt as well or a batch file (“Batch
Mode”)

– Useful if you know program will run correctly
– Have multiple files processing at same time
– R CMD BATCH filename
– Output is saved to .Rout file

23

Functions and Statements

• R has a wide array of functions, both in the base load set and
the packages. Some numeric functions:

• Functions are called similar to Excel
– Ex: abs(-3.5) (returns 3.5)

• Functions can take in any number of parameters but return at
most a single object

• Some functions have optional parameters – can enter in
parameters in order they are defined or refer to them by name

• Statements have similar syntax but do not return a result

abs absolute value
log natural logarithm
log10 base 10 logarithm
%% modulus
%/% integer division
floor get lowest integer
ceiling get highest integer
max maximum
min minimum

3/15/2012

13

24

String Functions

• cat – catenates and prints vector of strings
• paste – converts to characters and catenates
• tolower, toupper – case conversion

25

Help

• Don’t exactly know the parameters for a function, or what it
does? Want to do something but don’t know the function? Get
help!

• At console window, type “?” followed by function name, or use
the help menu

– Ex: “?summary”, or “help(summary)”
• Use “??” followed by keyword to do search

– Ex: “??regression”
– Or try searching Google (“R linear regression”)

3/15/2012

14

26

Comments, Whitespace, etc.

• Code can span multiple lines
• Code can have white space, indentations, etc.
• Hash (#) comments out the rest of the line
• There is no multiple line comment in R (like /* */ construct in

C or SAS

27

Assignments

• Suppose you want to set the variable x to equal 5
• Type “x <- 5” (Combine the less than sign “<“ and the minus sign “-”)

– Also:
• x=5
• 5 -> x
• assign(‘x’, 5)

• In words: “x gets 5”
• Now type “x” at the command line
• Now type “objects()”

– x has been saved as an R object
• Equivalent is ls() (“list”, like Unix command)
• Now type “rm(x)” (“remove”)

– To remove the object x if we’re done with it
• Now type “objects()” again

– The object x is gone

3/15/2012

15

28

1. x<- 2 + 2 * 2
2. assign(8, x)
3. x -> 8
4. x = 8

Knowledge check – which sets x to 8?

29

Workspaces

• Scripts allow you to store code, not data
– Use .R suffix

• All data is stored in a single area called the workspace
• Workspace contains all variables as well as functions that have

been created or loaded
– Use File / Load Workspace, File / Save Workspace
– Stores data and also loaded function definitions
– Uses .RData suffix

• Because all data is in memory at the same time, you need to
be careful with what variables are saved – it is not hard to run
out of memory, depending on your system resources

3/15/2012

16

30

R Basics - Vectors

• A vector is a sequence of elements of the same type
• R handles vectors very naturally.

– Type “c(1,2,3,4,5)” at the command line and hit enter
– “c” stands for “concatenate”
– This is how to create a vector of numbers
– Alternately:

• Type “1:5”
• Type “seq(1,5)”

• Note: do not have to declare or dimension variables

31

Working with Vectors

• R handles vectors
very naturally

• Type these
commands into
your R session to
gain comfort.

3/15/2012

17

32

Filtering on Vectors

• Reference individual
elements of vector using
brackets

• Can use integer
elements or boolean
conditions

33

Special Values and Coercion

• NA is the R version of a missing value
– Missing values as any part of an operand generally return missing

values (ex: 3 + NA = NA)
– Can test for missing values with is.na() function

• Similarly, NULL is a reserved word for an undefined object
• NaN = Not a Number (usually math error)
• Inf = infinity
• Can change the type of a variable using functions like
as.integer, as.double, as.vector, etc.

3/15/2012

18

34

One Minute Exercise

• Variable x contains the vector (3, -5, 7, NA, 4, NA, 9)
• Create variable y which has all of the NA values removed

35

One Minute Exercise

• Variable x contains the vector (3, -5, 7, NA, 4, NA, 9)
• Create variable y which has all of the NA values removed

y <- x[!is.na(x)]

3/15/2012

19

36

Working with Matrices

• A matrix is an 2-
dimensional array

• This screen
illustrates how to
create a matrix from
a vector

• Vectors have length,
matrices have
dimension

• Use array() function
if 2 dimensions not
enough…

37

Working with Matrices

• R is designed to handle
matrices naturally

• The bracket notation
“mat[row, column]”
allows you to access
any element of a
matrix

• Notice what happens
when you leave the
row or column entry
blank

3/15/2012

20

38

Working with Matrices

• We can get fancier by
creating an index.

• Let’s use an index to
divide the matrix into
disjoint sets of rows.

• Think about how this
trick can be used in
predictive modeling
projects.

• We divide a dataset
either by a random
number or some other
dimension.

Hint: you can always click “ctrl-l” to clear the screen

39

Data Frames

• A data frame is a matrix-
like structure whose
columns may be of differing
types (numeric, logical,
factor, character, etc.)

• Like an Excel table or a SAS
dataset

• Columns have names
• All of the matrix functions

apply to data frames
• Also can reference the

columns by their names
(data_frame$col_name)

Hint: you can always click “ctrl-l” to clear the screen

3/15/2012

21

40

Knowledge check

You have the following data frame
(HairEye):

Which of these statements returns a
different value?
A. HairEye[10, 3]
B. HairEye[10,]$Freq
C. HairEye[,3][10]
D. HairEye[HairEye$Hair==“Brown &

HairEye$Eye==“Hazel,]$Freq
E. HairEye[3, “Freq”]

Hint: you can always click “ctrl-l” to clear the screen

41

Data Frames

• Some common data manipulations:
– rbind – combine two data frames

by row
– cbind – combine two data frames

by column
– order – determine order of records

in a data frame – used for sorting
– merge – combine two datasets

across a common key
– Methods to aggregate data

• rowsum, rowSums, colSums – only
perform sums

• aggregate – allows different
functions

• apply – apply a function across
rows or columns of data frame

• sapply – apply a function across
columns of data frame

• tapply – apply function to a
“ragged array”

3/15/2012

22

42

Lists

• Ordered sequence of objects
• Each object can be any class
• Ex:

– lst <- list(policy=12345, insured=“John Smith”,
coverages=c(“AL”, “APD”), prem=c(1500, 200))

– Refer to list elements by number or name
– lst[[1]] == lst$policy

• Useful for returning data from functions
– Each function returns at most a single object, but using

a list, this object can contain many objects within

Hint: you can always click “ctrl-l” to clear the screen

43

Branching

• R has standard if-then constructs
– if(condition) expr
– Ex:

• if(is.na(var)) var <- 0
• if(any(df$inc_loss<df$pd_loss)) print(“Claims with paid >

incurred”)
– If more than a single command to execute, then must put

sequence in brackets:
• if(sum(premium) != 0)

{
LR <- sum(loss) / sum(premium)
LR <- sum(min(loss, 200000)) / sum(premium)

}
– Includes else branch:

• if (condition) expr_T else expr_F

Hint: you can always click “ctrl-l” to clear the screen

Tip: multi-line comment can
be coded by:
if(FALSE) {

code to comment out
}

3/15/2012

23

44

Looping

• For loops:
– for (name in expr_1) expr_2
– Ex: for(i in 1:5) x <- x + df[i]
– Looping expression does not need to be evenly distributed
– for(j in c(1, 3, 6, 10)) print(sum(df[,j])

• Other loops:
– repeat expr
– while (condition) expr

• Note: avoid loops when not necessary! They are usually
considerably slower to execute

Hint: you can always click “ctrl-l” to clear the screen

45

User-Defined Functions

• It’s easy to create functions to be used in programs
– function_name <- function(parameters) {

code
return(value)

}

– Tip: save common functions in separate script, use source()
function at top of script to include contents of a script in another
script

Hint: you can always click “ctrl-l” to clear the screen

3/15/2012

24

46

Exercise

• Create a function that accepts a vector as a parameter, and
returns the vector but with all values capped at the 99th

percentile
– Hint: quantile(x, p) is the function for determining the value at

a given percentile

