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. . . . . .

Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to
the letter and spirit of the antitrust laws. Seminars conducted under
the auspices of the CAS are designed solely to provide a forum for the
expression of various points of view on topics described in the
programs or agendas for such meetings.
Under no circumstances shall CAS seminars be used as a means for
competing companies or firms to reach any understanding expressed
or implied that restricts competition or in any way impairs the ability
of members to exercise independent business judgment regarding
matters affecting competition.
It is the responsibility of all seminar participants to be aware of
antitrust regulations, to prevent any written or verbal discussions that
appear to violate these laws, and to adhere in every respect to the
CAS antitrust compliance policy.
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Agenda

Introduction to boosting methods
Connection between boosting and statistical concepts (linear models,
additive models, etc.)
Gradient boosting trees in detail
An application to auto insurance loss cost modeling
Limitation of Gradient Boosting and proposed improvement - Direct
Boosting
Comparison of various modeling techniques
Additional features of Boosting machines.
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. . . . . .

Non-life insurance ratemaking models: The two cultures

Data generating process in ratemaking models

x → nature → y

x : driver, vehicle and policy characteristics.
y : claim frequency, claim severity, loss cost, etc.

The data modeling culture

x → Poisson, Gamma, Tweedie → y

The algorithmic modeling culture

x → unknown → y

Algorithms (e.g., decision trees, NN, SVMs) operate on x to predict y
Objectives of statistical modeling

Accurate Prediction
Extract useful information
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. . . . . .

Boosting methods: A compromise between both cultures

In particular, Gradient Boosting Trees provide . . .

Accuracy comparable to Neural Networks, SVMs and Random Forests

Interpretable results

‘Little’ data pre-processing

Detects and identifies important interactions

Built-in feature selection

Results invariant under order preserving transformations of variables

No need to ever consider functional form revision (log, sqrt, power)

Applicable to a variety of response distributions (e.g., Poisson,
Bernoulli, Gaussian, etc.)

Not too much parameter tuning
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. . . . . .

Boosting framework

Boosting idea

Based on "strength of weak learnability" principles
Example:
IF Gender=MALE AND Age<=25 THEN claim_freq.=‘high’

Simple or “weak" learners are not perfect!
Combination of weak learners ⇒ increased accuracy

Problems

What to use as the weak learner?
How to generate a sequence of weak learners?
How to combine them?
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. . . . . .

The predictive learning problem

Let x = {x1, . . . , xp} be a vector of predictor variables, y be a target
variable, and M a collection of instances {(yi , xi ) ; i = 1, . . . ,M} of known
(y , x) values.

The objective is to learn a prediction function f̂ (x) : x → y that minimizes
the expectation of some loss function L(y , f ) over the joint distribution of
all (y , x)-values

f̂ (x) = argmin
f (x)

Ey ,xL(y , f (x))

(e.g., L(y , f (x)) = squared-error, absolute-error, exponential loss, etc.)
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. . . . . .

Boosting ⊇ Additive Model ⊇ Linear Model

Linear Model : E (y |x) = f (x) =
p∑

j=1

βjxj

Additive Model : E (y |x) = f (x) =
p∑

j=1

fj(xj)

Boosting : E (y |x) = f (x) =
T∑

t=1

βth(x; at)

where the functions h(x; at) represent the weak learner, characterized by a
set of parameters a = {a1, a2, . . .}.

Parameter estimation in Boosting amounts to solving

min
{βt ,at}T

1

M∑
i=1

L

(
yi ,

T∑
t=1

βth(xi ; at)

)
where L(y , f (x)) is the chosen loss function to define lack-of-fit.
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. . . . . .

Gradient boosting

Friedman (2001) proposed a Gradient Boosting algorithm to solve the
minimization problem above, which works well with a variety of
different loss functions

Models include regression (e.g., Gaussian, Poisson), outlier-resistant
regression (Huber) and K-class classification, among others

Trees are used as the weak learner

Tree size is a parameter that determines the order of interaction

Number of trees T in the sequence is chosen using a validation set (T
too big will overfit).
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. . . . . .

Gradient boosting in detail

Algorithm 1 Gradient Boosting

1: Initialize f0(x) to be a constant, f0(x) = argmin
β

∑M
i=1 L(yi , β)

2: for t = 1 to T do
3: Compute the negative gradient as the working response

ri = −
[
∂L(yi , f (xi ))

∂f (xi )

]
f (x)=ft−1(x)

, i = {1, . . . ,M}

4: Fit a regression tree to ri by least-squares using the input xi and get
the estimate at of βh(x; a)

5: Get the estimate βt by minimizing L(yi , ft−1(xi ) + βh(xi ; at))
6: Update ft(x) = ft−1(x) + βth(x; at)
7: end for
8: Output f̂ (x) = fT (x)
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Gradient boosting for squared-error loss

For squared-error loss, the gradient of L is just the usual residuals

L = (yi − f (xi ))
2

∂L(yi , f (xi ))

∂f (xi )
= 2(yi − f (xi )) = ri

In this case, the gradient boosting algorithm simply becomes

f̂ (x) = Tree1(x) + Tree2(x) + . . .+ TreeT (x)
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. . . . . .

Injecting randomness and shrinkage

Two additional ingredients to the boosting algorithm:

Shrinkage
Scale the contribution of each tree by a factor τ ∈ (0, 1]. The update
at each iteration is then

ft(x) = ft−1(x) + τ.βth(x; at)

Low values of τ slow down the learning rate
Requires a higher number of trees in compensation
Accuracy is better

Randomness
Sample the training data without replacement before fitting each tree –
usually 1/2 size
↑ Variance of the individual trees
↓ Correlation between trees in the sequence
Net effect is a ↓ in the variance of the combined model.
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. . . . . .

An application to Loss Cost modeling

The Data

Extracted from a major Canadian insurer

Approx. 3.5 accident-years

At-fault collision coverage

Approx. 427,000 earned exposures (vehicle-years)

Approx. 15,000 claims

Data randomly partitioned into train (70%) and test
(30%) data sets
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Overview of model candidate input variables

Driver Accidents/convictions Policy Vehicle

Age of p/o # at-fault accidents (1-3 yrs.) Time on risk Vehicle make

Yrs. Licensed # at-fault accidents (4-6 yrs.) Multi-vehicle flag Vehicle new/used

Age Licensed # Not-at-fault accidents (1-3 yrs.) Deductible Vehicle lease flag

License class # Not-at-fault accidents (4-6 yrs.) Billing type hpwr

Gender # driving convictions (1-3 yrs.) Billing status Vehicle age

Marital status Examination costs (AB claims) Territory Vehicle price

Prior FA occ. driver under 25

u/w score occ. driver over 25

Insurance lapses Group business

Insurance suspensions Business origin

Property flag
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. . . . . .

Building the model

Loss functions
Frequency model: Bernoulli deviance
Severity Model: Squared-error loss

Shrinkage parameter τ = 0.001
Sub-sampling rate = 50%
Size of the individual trees: started
with single-split (no interactions),
followed by (2-6)-way interactions.
Number of trees: selected by
cross-validation.
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Relative importance of predictors

Frequency (left) and Severity (right).
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Age licensed
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Sample partial dependence plots – Frequency model
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Inspecting interactions using Friedman’s H-stat
require(gbm)

n <- 50 # number of inputs

x <- 1:n

best.iter <- gbm.perf(gbm.model, plot.it = FALSE, method = "cv")

ans <- matrix(nrow = length(x), ncol = length(x))

for (i in 1:length(x)) {

for (j in 1:length(x)) { if (i > j) {

ans[i,j] <- interact.gbm(gbm.model,

data=mydata,

i.var =c(x[i],x[j]),

n.trees = best.iter) }

}

}

Interaction Matrix

x1 x2 . . . xn
x1 na na · · · na
x2 0.5 na · · · na
...

...
...

. . .
...

xn 0.9 0.8 · · · na
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Prediction performance – Gradient Boosting vs. GLM

(0.418,0.896] (0.896,0.973] (0.973,1.05] (1.05,1.15] (1.15,3.36]

Ratio: GB Pred. Loss Cost / GLM Pred. Loss Cost
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. . . . . .

Improvement over GBM - Direct Boosting

GBM has quite a few advantages over other modeling
techniques

It is very intuitive - Aim at loss minimization in each iteration
It is predictive - Empirical tests have shown that GBM is superior to
other popular modeling techniques
It provides output with easy interpretation - The results can be
visualized while NN, Gen Alogirthm cannot
It is robust to missing values and correlated parameters

But it does have some weakness as well ...
It is not very fast - It can take 6 hours to model a data with 4 million
entries
It is deficient in dataset with many zeros when using exponential form.
Some distributions are not easily available - E.g. Tweedie distribution
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. . . . . .

Improvement over GBM - Direct Boosting

What if ...
there is a model that has all the advantages of GBM ...
but not the weakness?
Direct boosting may do the work.

DBM at a Glance
It is a modified version of GBM
It is faster as it requires fewer calculation at each iteration
The algorithm is more robust with data having many zeros
Tweedie distribution is incorporated
It is more predictive
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. . . . . .

Direct Boosting in detail

GBM first calculates :

The gradient for each observation
Partition the dataset that max out the difference in the group average
of gradient
Obtain the group Loss function minimizer
Apply shrinkage factor

DBM "thinks" the reverse. We first obtain the form of group loss
function minimizer.
Due to the shrinkage, we can apply taylor series to find the linear
approximation of the minimzer. (Recall that exp(x) ∼ x when x is
around 0)
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. . . . . .

Direct Boosting in detail

The loss minimizer for Poisson is ln(
∑

yi∑
eft (xi )

)

This approximation is in general in summation term:∑
yi/n −

∑
eft(xi )/n

Noting this, DBM calculation the summand at observation level. E.g
yi − eft(xi ). We call this as pseudo minimizer
Similar to GBM, DBM splits the dataset into several groups with each
group having max average difference in pseudo minimizer
Since the average is already the group loss function minimizer, the last
step of GBM is not necessary.
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. . . . . .

Direct Boosting in detail

Algorithm 2 Direct Boosting for Tweedie Distribution

1: the Loss function to be negative of loglikelihood of Tweedie distribution
with exponential form: L(y , f (x)) =

∑ yi exp(1−p)f (xi)

1−p − exp(2−p)f (xi)

2−p .

2: Calculate the Group loss minimizer, hi = ln(
∑

yi exp(1−p)f (xi)∑
exp(2−p)f (xi)

).
3: Linear Approximation through Taylor’s expansion, h =∑

yiexp(1−p)f (xi)/n −
∑

exp(2−p)f (xi)/n.
4: Pseudo loss minimizer hi = yiexp(1−p)f (xi) −

∑
exp(2−p)f (xi).

5: Initialize f0(x) to be a constant, f0(x) = ln(
∑

yi )
6: for t = 1 to T do
7: Compute the pseudo loss function minimizer, hi
8: Fit a regression tree to fit hi by least-squares using the input xi and

get the estimate at
9: Update ft(x) = ft−1(x) + hi

10: end for
11: Output f̂ (x) = fT (x)
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Direct Boosting in detail - The predictive power: Retention
modeling

The performance of various models are tested using same data and
input varaibles.
The model predicts the probability of churn (or renew). For predictive
models, we have 40/30/30 for training/validation/testing.

Model Lift (Top decile churn/average churn) ROC Area

Decision Tree 2.6692 0.6981

GLM - Logistic 3.0332 0.7275

Support Vector Machines 3.0520 0.7312

Neural Net 3.0828 0.7293

GBM - Poisson 3.0879 0.7304

GBM - Logistic 3.1016 0.7330

DBM - Poisson 3.1306 0.7330
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. . . . . .

Direct Boosting in detail - The predictive power: Loss cost
modeling

Continuing the GBM vs GLM comparison for collison coverage, we
compare the DBM performance against GBM.
Since GBM does not work well in poisson and Tweedie,

We first need to model the frequency using logistic regression.
Gamma modeling in severity module then follows
Combine both to form the loss cost model.
relativities cannot be obtained as logistic regression is not in
exponential form.

On the contrary, DBM can model loss cost directly using Tweedie
models.
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Direct Boosting vs Gradient Boosting
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Direct Boosting - Relativities at a Glance
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. . . . . .

Direct Boosting in detail - Additional features

With the above form, DBM is already more predictive than any other
predictive models in all 6 of the datasets that we have tried. However,
there are some more additional features that help make the model
predictive.

Monotonic constraint

In many occassions, some of the patterns are desirable. E.g, loss cost
decreasing with years licensed.
This addtional feature tells the machine not to split the data in case of
reversal.
The improvement is promising.
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Monotonic Constraint
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Monotonic Constraint
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. . . . . .

Direct Boosting in detail - Additional features

Interaction constraint

The well promoted advantage of data mining techniques is to model
any interaction to any degree
However, it can be a double-edged sword. It is most often that the
interactions are generated from noise.
We are working towards the flexibility to allow users to select meaning
intereaction.
An example is the model only fit 4 groups of intereaction, Group 1 -
vehicle related, Group 2 - driver’s related, Group 3 - Location related,
Group 4 - User’s specified.
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Your questions...
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