

By-Peril Predictive Modeling for Homeowners

David Cummings Senior VP – Personal Lines & Analytics

Verisk Insurance Solutions | ISO AIR Worldwide Xactware

Opportunities and Challenges in By-Peril Modeling

- Lessons from Personal Auto
 - Major innovations in historically static rate plan
 - Increased competition
 - Profitable growth for adopters of advanced analytics
 - Hunger for the next innovation
 - In comparison, much less modeling has been done in Homeowners
 - Translates into greater opportunity
 - By-peril modeling is an important tool

Peril Distribution Over Time

Leading the Way With By-Peril Rating

Market Share Benefits

The 25 carriers using by-peril plans in 2011 have increased their combined market share from 28% to 34% in 5 years from 2007 to 2012

Source: ISO research using Perr & Knight filings and 2007-2012 AM Best Financials

Leading the Way With By-Peril Rating

Loss Ratio Benefits

-The 25 companies rating by-peril have loss ratios **7.2** points lower than their competition in 2012

Source: ISO research using Perr & Knight filings and 2007-2012 AM Best Financials

Verisk Insurance Solutions | ISO AIR Worldwide Xactware

Opportunities for By-Peril Modeling

- Geographic Refinement
 - Traditional Rating Factors
 - Building Characteristics

Implied By-Peril Loss Costs for Standardized Risk

📕 Fire 📕 Hail 📕 Liability 📕 Lightning 🗔 OtherProp 📕 TheftVand 🖉 WaterNonWth 📕 WaterWth 📕 Non Hurr Wind 🗔 Hurricane

- Frequency and Severity modeled separately
- Combine to form 'all peril loss cost' multiplied frequency and severity – added across perils

Phoenix, AZ Geographic Area

 ISO Territories: 9

 Verisk Insurance Solutions
 ISO
 AIR Worldwide
 Xactware

ZIP Codes: 80

RAHO: 1309

* Loss cost are calculated @ Territory Representative Risk

External Data – Weather

External Data – Weather

By-Peril Modeling – Serendipitous Discoveries

Neather & Elevation	FIRE	LIGHT	WIND	HAIL	ww	LIAB	ТН
Elevation							
Temperature							
Precipitation							
Relative Humidity							
Snow							
Wind							
ce Pellets							

External Validation:

Ellen Cohn. "Weather and Crime". The British Journal of Criminology 30:51-64 (1990)

By-Peril Rating Factors

Modeled simultaneously with geographic variables

- Amount of Insurance
- DeductibleAge of Construction
- Produces a set of countrywide tables by peril for each rating factor

By-Peril Rating Factors + Environmental Factors

- Why are by-peril rating factors more accurate?
 - By-peril rating factors allow for a more explicit recognition of the impact of perils varying by location
 - By-peril rating factors more dynamically react to changing peril contributions over time

I	Peril	Amount of Insurance Factor	Location A	Location B	Location C
	Fire	1.5	30%	25%	50%
	Wind	1.2	20%	25%	15%
	Water	1.0	40%	25%	20%
	Other	2.0	10%	25%	15%
	All-Perils Factor	1.37	1.29	1.43	1.39

Building Characteristics Overview

Use specific building and property features:

- Construction style & material
- Roof age & material
- Square footage, lot size, # of bedrooms / baths / stories
- Heating and cooling systems
- Garage and basement information
- Etc.....

Building Characteristics Illustration

Both houses are in the same ZIP Code and have \$300k ITV Same year of construction and in same PPC

3000 sq foot 4 bed, 3.5 bath colonial Brick exterior, attached 2 car garage

2500 sq foot 3 bed, 2.0 bath ranch Wood siding, 2 car carport

Building Characteristics Illustration

3000 sq foot 4 bed, 3.5 bath colonial Brick exterior, attached 2 car garage

- Multiple stories have higher water non-weather losses
- 3.5 baths and two stories leads to higher water claims
- Attached garage lowers fire and wind exposure
- Fireplace increases hail exposure
- Brick construction lowers weather claims
- All peril factor: 1.165
 - Hail: 1.258
 - Water Non-Weather: 1.309
 - Liability: 0.859
 - Fire: 0.908

Building Characteristics Illustration

- <u>-</u>

- Larger floor plan has greater weather exposure
- Fewer bathrooms decreases water non-weather losses
- Pool increases wind and liability exposure
- Composite shingles lowers weather claims
- Single story increases theft/vandalism
- All peril factor: 0.950
 - Hail: 0.605
 - Water Non-Weather: 0.905
 - Liability: 1.162
 - Theft & Vandalism: 1.373

2500 sq foot 3 bed, 2.0 bath ranch Wood siding, 2 car carport

Building Characteristics Summary

- All peril factor: 1.165
 - Hail: 1.258
 - Water Non-Weather: 1.309
 - Liability: 0.859
 - Fire: 0.908

- All peril factor: 0.950
 - Hail: 0.605
 - Water Non-Weather: 0.905
 - Liability: 1.162
 - Theft & Vandalism: 1.373

Data Challenges in By-Peril Predictive Modeling

- Data Preparation
 - Splitting losses by peril
 - Data Volume

- Separating the signal from the noise in each peril

Text Mining for Cause-Of-Loss

- Rich information buried in unstructured data, such as loss descriptions or adjuster notes
- E.g., extracting the "Type of Loss" from the loss description

Dealing with Data for By-Peril Modeling

- Accurate by-peril Homeowners models require extensive data resources
 - Low frequency line split further by-peril
 - Severity is volatile and differs significantly by-peril
- Solution: Create re-usable data features
 - Derived from modeling on larger datasets
 - Can be used directly as inputs into models on smaller datasets – Ensuring stable results without overfitting

Gaining Customized Lift With Re-Usable Data Features

- Step 1: Score your data using results from "larger" model
- Step 2: Fit your GLM using scored variable
 - Use continuous predictor (variate)
 - Apply transformations as needed
- Result:
 - Customized rating factor indication requiring less of your data
 - Avoids overfitting by preserving information from "larger" model

Number	Amount of Insurance	Fire Severity Factor
1	210,000	1.32
2	140,000	1.13
3	370,000	1.63

 $\cdots + \beta \times (\text{AOI Fire Severity Factor}) + \cdots$

Be Careful with Binned Variables

Without enough data, binned variables ignore

known relationship to loss – can lead to overfitting

Ż

Variable Treatment	Gini
Continuous	38.05
5 bins – equal exposures	37.77
10 bins – equal exposures	33.78
20 bins – equal exposures	31.72

Data with 1,400 claims

Variable Treatment	Gini
Continuous	29.18
5 bins – equal exposures	28.93
10 bins – equal exposures	29.31
20 bins – equal exposures	30.12

Data with 6,300 claims

Opportunities for Enhanced Segmentation

- Use sum-of-peril loss cost estimates
 - Build new territories
 - Refine existing territories
- Use peril-specific models to break apart allperil rating
 - Geographic exposures and rating variables
- Using components as input to models
 - Incorporate new predictive data with simpler sourcing, preparing, and selecting of variables
 - Enables accurate predictions on smaller data sets

