Property Catastrophe Model Blending

2014 CAS Ratemaking and Product Management Seminar

March 30 – April 1, 2014

Agenda

Section 1	Why Blend Models?
Section 2	Vendor Model Testing
Section 3	Customization and Blending Examples
Section 4	Recap

Section 1: Why Blend Models?

Which Answer Is Best?

*2007 Florida Hurricane Catastrophe Fund's zero deductible statewide aggregate personal residential exposure data

source: Florida Commission on Hurricane Loss Projection Methodology, 2009 Standards

3

Catastrophe Model Customization and Blending – Why?

- Purpose of blending or customization is to better reflect a company's specific loss history or internal view of catastrophe risk
- Benefits of customization of model outputs:
 - Allows a company to develop a view of catastrophe risk that fits their actual claims experience (e.g. unique structures, loss adjustment practices)
 - Select best model for different sub-portfolios or perils
 - Minimize large changes due to vendor model changes
 - Reduce model risk that results from a reliance on a single vendor model's opinion

Catastrophe Model Customization and Blending – How?

- Adjustments should be based on:
 - A review of the science behind models
 - Model performance compared to claims
 - An understanding of notional model testing
- Desire for a customized loss curve that can be used throughout:
 - Reinsurance placement, ERM, reinsurance allocation, rate filings, rating agency reporting
- Implementation in a simulation environment provides flexibility

Custom Model PML Table					
Probability of	Return			Custom	
Exceedance	Period	Model 1	Model 2	Model	
99.90%	1,000	779.7	1,152.4	1,000.5	
99.80%	500	499.7	812.9	715.1	
99.60%	250	371.7	547.5	433.6	
99.50%	200	333.5	471.4	380.5	
99.00%	100	179.6	280.9	226.5	
98.00%	50	105.6	153.2	124.6	
96.00%	25	58.7	75.1	65.9	
90.00%	10	20.9	22.4	21.7	
80.00%	5	6.6	7.1	6.8	
Average Anni	al Loss	12.0	16 1	14 0	
Standard Da		57.2	02.0	76.6	
Standard De	viacion	57.3	93.9	70.0	

Custom Model Event Loss Table

			Net Pre Cat	Net of RI
Trial	EventID	Model	Loss	Loss
1	1101	Custom	79,115,935	79,115,935
1	2101	Vendor 1	221,557	221,557
1	2102	Vendor 1	211,948,148	100,000,000
2	3201	Vendor 2	90,476	90,476
2	1201	Custom	4,725,664	4,725,664
3	1301	Custom	76,590	76,590
÷	÷	÷	:	÷
249999	324999901	Vendor 2	200,790	200,790
249999	324999902	Vendor 2	26,215,545	26,215,545
250000	125000001	Custom	165,686	165,686
250000	125000002	Custom	137,798,385	100,000,000

In our view, using multiple models would increase transparency in the market...We therefore consider that a multiple-model approach would give existing and potential investors a better perspective on the range of potential outcomes. While it would not eliminate uncertainty, it should provide a greater insight into the risk a deal presents, and to some extent, address the perceived issue of "model shopping."

- S&P Press Release, September 6, 2011

When companies provide output from multiple catastrophe models, A.M. Best's baseline approach is to take the straight average. This, however, can be adjusted to a weighted average in cases where more refined information is available that supports greater reliance being placed on a given model. In either case, A.M. Best expects a company's management to be able to explain why it has utilized the output selected to best represent its catastrophe exposure.

- Best's Briefing, March 10, 2011, "Catastrophe Models and the Rating Process FAQ"

Spectrum of Use of Multiple Cat Models

Seldom	Common	Developing	Best in Class	Aspirational
Single Model	Compare Multiple Model Results	Multiple Models for Corporate Planning	Model Adjustment at Granular Level	Full Model Blending at Account Level
Single model used for all tasks Do not pay significant attention to results from other vendor models	Receive and evaluate results from multiple models Only one model licensed in-house (if any) Reinsurance broker provides results for alternative models Account pricing still based off of single model	Incorporate results from multiple models into corporate level catastrophe decisions Reinsurance purchasing most common (i.e. limit) Rating agency reporting Most commonly simple blend (i.e. 50/50) of two models	Run multiple models at corporate level, use adjustment factors to blend at granular level Single model run at granular level (i.e. account level) for pricing Adjustment factor approximates corporate blended view	Multiple models run at account pricing level pre- binding Blended results used to price accounts Corporate view fully embedded at underwriter level

- Reinsurers main class that have reached 'aspirational' level of full model blending at account level
- Simulation environment provides most flexibility to implement blending

Model Blending in Rate Filings

- For hurricane, most companies still file based on a single model, either AIR or RMS
 - Some companies do blend the two models, most often using a 50/50 blend
- For earthquake and fire following, EQE is more commonly used than it is for hurricane, either independently or blended
- All other US perils are predominately priced based on experience
 - Models are starting to see use, particularly for territorial ratemaking
- Model blending isn't permitted by the Florida OIR

Section 2: Vendor Model Testing

Best Practices of Catastrophe Model Validation Framework

Catastrophe Model Validation Framework

Does this model provide a **valid representation** of the catastrophe risk in **my portfolio**, taking into account the peril's **materiality**?

	Understanding the Model	Understanding Impact to Own Portfolio			
Goal is to undersi sufficient to under	tand the workings of the model at a level rstand impact on own portfolio	Given specific portfolio, to what model assumptions are results most sensitive?			
Use notional port	folio testing to facilitate understanding	Sensitivity testing	g on actual portfolio		
Frequency	 Compare assumptions to historical record by region and Saffir-Simpson category Impact of warm SST catalogue 	Model Settings	 Impact of inclusion of various primary and secondary modifiers Storm surge, loss amplification, event rates 		
Hazard	 Test assumptions for central pressure, wind speed, filling rate Storm surge modeling 	Actual Losses	 Compare modeled results to actual experience Actual AAL vs. modeled AAL 		
Vulnerability	 Reasonability of vulnerability curves by characteristic, line, and geography Use notional portfolios to test 	Scenario Analysis	 Run deterministic/hypothetical events through portfolio Reasonableness of losses given exposures 		
Industry	 Compare modeled losses to historical PCS industry losses 				

Recommendations

Given model validation, are the results reasonable? Are any adjustments warranted?

· Historical Industry AAL vs. Modeled AAL

Losses

Model Validation: Comparison to Historical Events

	-	Trended PCS	RMS	
Storm	Year	Estimate ¹	Estimate ²	% difference
Andrew	1992	38,883	38,175	-1.8%
Erin	1995	815	603	-26.0%
Opal	1995	3,168	1,343	-57.6%
Georges	1998	570	180	-68.4%
Charley	2004	7,646	8,602	12.5%
Ivan	2004	5,039	1,355	-73.1%
Jeanne+Frances	2004	8,688	11,583	33.3%
Wilma	2005	10,908	11,548	5.9%
Katrina	2005	594	783	31.8%
Dennis	2005	794	554	-30.2%
Sum of All Storms		77,105	74,726	-3.1%

Comparison of Actual and Estimated FL Res Industry Loss (\$M)

¹Property Claims Services estimate of losses. Losses for Florida are normalized to 2011 values, represent residential lines and includes demand surge and excludes loss adjustment expense.

²RMS estimates for residential lines and are based on RMS Industry Exposure for 2011. Losses include demand surge and exclude loss adjustment expenses. source: Florida Commission on Hurricane Loss Projection Methodology, 2009 Standards

Historical vs. Stochastic AALs: Mind the 'Gap'

		A		What is a sized 'Ga	reasonable p'?
Model	Historical FL Res AAL (\$B)	MIND THE GAP	Stochasti Res AAL	c FL (\$B)	AAL 'Gap'
RMS v11	2.67	Limited number of years	3.47		1.30
RMS v10	2.80	Limited event footprints	3.26		1.16
AIR	2.84	Limited atoms interstition	3.62		1.27
EQE	3.26	Limited storm intensities	3.99		1.22
ARA	4.13	Skewed distributions	5.28		1.28

*2007 Florida Hurricane Catastrophe Fund's zero deductible statewide aggregate personal residential exposure data

*Stochastic results use long term frequency rates; source: Florida Commission on Hurricane Loss Projection Methodology, 2009 Standards

Proprietary & Confidential

12

Section 3: Customization and Blending Examples

Key Inputs to the Process

- Event Loss Tables (ELTs)
 - Collection of all the losses for each cat model peril analysis
 - An ELT will be produced for each peril
 - Hold all the information needed to produce PML/EP, AAL, pure premium to a layer, and standard deviation of each metric

ELT Structure by Vendor	Α	В	С	D
All events have same frequency	Y	Ν	Ν	Ν
Events are assigned to a specific year	Y	Ν	Ν	Ν
Losses for each event are a probability distribution	Ν	Ν	Ν	Y

Problem of model blending reduces to how to adjust and then combine the ELTs

Illustrations of Blending Methods

- 1. Using different models for different perils
- 2. Blending multiple models within a single peril
- 3. Adjusting event rates
- 4. Blending primary and secondary perils
- 5. Blending across business units

1. Different Models for Different Perils

- Problem: Calculate a combined occurrence and aggregate EP curve using Model A for Hurricane, Model B for Earthquake, and Model C for Severe Thunderstorm
- Solution: Simulate trials (years) of losses from the original ELTs using preferred simulation tool

2. Blending multiple models within a single peril

- **Severity Blending**: Simple weighting of AALs and EPs
 - Blended EP = 50% of Model A EP + 50% of Model B EP (or AAL)
- Frequency Blending: Sampling years from different models
 - Sample from each of Models A and B for 50% of the years
 - Produces a proper probability distribution which can be used in other contexts

Net Pre Cat EP Summary

Probability of Non- Exceedance	Return Period (Year)	Model A	Model B	50/50 Average of Results [1]	Blended* Net Pre-Cat Loss [2]	[1] / [2]
Occurrence	Loss					
99.99%	10,000	93,568,293	253,585,771	173,577,032	191,538,126	0.91
99.90%	1,000	46,497,641	70,348,136	58,422,889	55,824,577	1.05
99.60%	250	24,097,451	21,857,702	22,977,576	22,962,547	1.00
99.50%	200	20,701,917	18,639,485	19,670,701	19,475,609	1.01
99.00%	100	12,458,382	7,750,439	10,104,410	9,999,998	1.01
98.00%	50	5,342,460	2,310,319	3,826,390	3,827,784	1.00
95.00%	20	732,979	317,173	525,076	462,667	1.13
90.00%	10	29,657	62,002	45,829	53,725	0.85
Average Ann	ual Loss	431,301	392,261	411,781	411,356	1.00

*Results based on 400,000 ReMetrica simulated years (50% using Model A, 50% using Model B)

Long-Term and Near-Term Hurricane Frequency Impact by Model

Near Term Frequency Impact

Atlantic Basic Hurricane Activity – Warm Phase vs. Cool Phase

Proprietary & Confidential

Relationship Between SST Anomalies and Hurricanes

Hurricane Frequency Research

Frequency and Loss Analysis of U.S. Landfalling Hurricanes: Long Term versus Warm Phase

Siamak Daneshvaran siamak.daneshvaran@aonbenfield.com 312-381-5886 Impact Forecasting LLC, Aon Benfield, Chicago, Illinois

Maryam Haji maryam.haji@aonbenfield.com 312-381-5873 Impact Forecasting LLC, Aon Benfield, Chicago, Illinois

Abstract

Table 7: Comparison of increase (1- ratio) for frequency and AAL between long term and warm

By reviewing recent lit	phase conditions			
However, less research	Storm Category	Landfall Frequency Percent Change	AAL Percent Change	
that are statistically mo =	1	15	15	
	2	14	16	
	3	11	15	
	4	13	17	
_	5	16	21	
	All	13	17	
– Published in the Journal of Risk Finance in 2012	2		40	
Proprietary & Confidential			21	

3. Adjusting Hurricane Frequency – I

Problem: An insurer prefers to use Model A for hurricane, but believes that Model A overstates the impact of near-term (NT) v. long-term (LT) landfalling hurricane frequencies

Sum of Event Rates	Long-term [1]	Near-term [2]	Ratio [2]/[1]
Model A	1.76	2.20	1.25
Selected Ratio			1.13

- **Simple approach**: Adjust Model A long-term event rates by 1.13
 - Simple, but misses event- and basin-specific information
- Better approach: If you have identical events in NT and LT sets, adjust event rates as follows

rate_k^{adj} = rate_k^{LT} +
$$\lambda$$
 (rate_k^{NT} - rate_k^{LT})

$$\begin{array}{l} \alpha &= \mbox{Model A ratio ([2] / [1] above)} &= 1.25 \\ \beta &= \mbox{Selected ratio ([2] / [1])} &= 1.13 \\ \lambda &= (\beta - 1) / (\alpha - 1) = (1.13 - 1) / (1.25 - 1) = 0.52 \end{array}$$

3. Adjusting Hurricane Frequency – II

Third approach

- Include both NT and LT event sets, rather than a blend of the two
- Solve for a weight $\boldsymbol{\omega}$ such that
 - $\omega + (1 \omega) \alpha = 1.13$
 - $[\alpha = 1.25, so \ \omega = 0.48]$
- Using simulation tool, draw from LT set ω % and from NT set (1 ω)% of the trials

- Benefits
 - Method works for vendor models where LT and NT event sets differ

Superstorm Sandy – Storm Surge

2/3 of all New York City homes damaged by Superstorm Sandy were outside of FEMA's existing 100-year flood zone. - Wall Street Journal

The highest storm surge measured by tide gauges in New Jersey was 8½ feet over normal levels at Sandy Hook, though it likely was higher because the storm knocked out the gauges.

- USA Today

Proprietary & Confidential

Modeling Hurricane Storm Surge

Proprietary & Confidential

25

4. Blending Primary and Secondary Perils

- Problem: One model is preferred for a primary peril, another for an associated secondary peril
 - Hurricane / storm surge , Shake / fire following
- **Example**: Hurricane from Model A, storm surge impact from Model B

		HU + Storm		
AALs	HU Only	Surge	SS Factor	
Model A	22,755,246	26,956,836	1.185	
Model B	15,125,000	16,032,500	1.060	

Approach 1

- For each EventID, k, in the Model A ELT, adjust HU mean losses to be

 $loss_k^{adj} = loss_k^{HU} \times 1.060$

- Note that all events get the same storm surge "lift"
- Approach 2 (Better)

 $loss_{k}^{adj} = loss_{k}^{HU} + \lambda (loss_{k}^{HU,SS} - loss_{k}^{HU}), where$ $\lambda = (1.060 - 1) / (1.185 - 1) = 0.324$

4. Blending Primary and Secondary Perils – Example

Occurrence Loss Summaries (losses in \$000s)

	[1]	[2]	[3]	[4]	[2]/[1]	[3]/[1]	[4] / [1]
Return	urn Model A		Model A, with	adjusted SS			
Time	no SS	with SS	Approach 1	Approach 2			
1000	\$465,660	\$496,949	\$493,600	\$475,130	1.067	1.060	1.020
500	\$371,586	\$400,967	\$393,881	\$380,218	1.079	1.060	1.023
250	\$289,582	\$317,068	\$306,957	\$297,530	1.095	1.060	1.027
200	\$265,913	\$292,500	\$281,868	\$273,590	1.100	1.060	1.029
100	\$199,343	\$222,913	\$211,303	\$206,048	1.118	1.060	1.034
50	\$144,589	\$164,618	\$153,264	\$150,160	1.139	1.060	1.039
25	\$99,651	\$116,088	\$105,630	\$104,192	1.165	1.060	1.046
10	\$52,030	\$62,641	\$55,152	\$55,261	1.204	1.060	1.062
AAL	\$22,755	\$26,957	\$24,121	\$24,121	1.185	1.060	1.060

5. Blending Models for Different Business Units

- Problem: Aggregating results from a single peril where each business unit uses a different model
- Solution: Map the event IDs of one model to the event IDs of another model by matching event characteristics
 - Once events are "matched", simulate events in one model and find matching event in second model

28

Event Mapping Method – Description

Map the event IDs of one model to the event IDs of another model by matching event characteristics

Parametric Appr	oach		Loss Approach				
Match detailed event characteristics	Match OEPs, Saffir- Simpson by gate	Match OEPs, Saffir-	Match OEPs at Regional level	Match OEPs at Nationwide level			
More complex				Simpler			

Hurricane Event Charateristics Provided	Model A	Model B
Event Rate	Х	Х
Saffir-Simpson category	Х	Х
Landfall Area		
By Gate	Х	Х
By County	Х	Х
By Latitude/Longitude	Х	Х
Radius to Maximum Winds (Rmax)	Х	Х
Central Pressure	Х	Х
1-min sustained wind speed 6hrs pre-landfall	Х	Х
Landfall Angle		
Degrees		Х
Qualitative: N, NE, E, etc	Х	

Event Mapping Method – Match OEPs (Ranks) by Region Example

- 1. Calculate full OEP curve for Model A (rank events)
- 2. Calculate full OEP curve for Model B (rank events)
- 3. Map the events of Model A to the events of Model B by matching occurrence exceedance probabilities (ranks)

4. Results in a mapping of Event IDs that approximately preserves both loss distributions

Model A — OEP Curve				Model B — OEP Curve			Mapped Events					
_	EventID	OEP	Return Period	Loss (\$B)		EventID	OEP	Return Period	Loss (\$B)	Model A EventID	Model B EventID	Event Rate
T	270090991	0.01%	10.000.5	112.5	\longrightarrow	2868396	0.00%	20,893.8	113.7	270090991	2868396	6.17E-06
	270002754	0.02%	5,000.5	84.8		2855790	0.01%	7,972.3	109.5	270090991	2855790	7.76E-05
	270039393	0.03%	3,333.8	70.5		2871434	0.01%	7,972.1	102.2	270090991	2871434	3.18E-09
	:	:	:	:	\rightarrow	2860055	0.01%	7,811.5	101.9	270090991	2860055	2.58E-06
	270171135	0.38%	263.7	19.8	l l	:		• ÷	÷	:	:	• ÷
	270206220	0.39%	256.9	19.5		2877060	0.38%	261.8	25.6	270139068	2877060	5.33E-06
ſ	270139068	0.40%	250.0	19.5		2869578	0.38%	261.4	25.3	270203993	2869578	4.55E-06
	:		:		\rightarrow	2861752	0.40%	250.0	24.9	270139068	2861752	9.85E-06
	270264922	1.97%	50.8	5.5		2868952	0.40%	247.0	24.5	270044732	2868952	2.14E-04
	270061574	1.98%	50.5	5.5			÷	:	:	÷	÷	÷
	270246902	2.00%	50.0	5.4		2862887	1.98%	50.6	4.5	270099438	2862887	3.69E-05
	:	:				2877465	1.98%	50.5	4.5	270103717	2877465	3.23E-05
-	•		•	·	\rightarrow	2857990	2.00%	50.0	4.5	270246902	2857990	2.78E-05
						2873568	2.01%	49.8	4.5	270166203	2873568	9.28E-06
							:	:	:	:	:	:

Validation of Event Mapping

Section 4: Recap

Property Catastrophe Model Blending

Goals	 Adjusting, blending, or customizing, the output of vendor catastrophe models in a fact-based, thoughtful manner Better reflect a company's specific loss history or internal view of catastrophe risk
Approaches	 Range from the simple to complex Examples shown today are just some of the ways to blend models Any approach chosen should reflect specific company goals, underlying reasons for blending, and the best science
Benefits	 Enable company to develop view of risk that fits claims experience Select best model for different sub-portfolios or perils Minimize large changes due to vendor model changes Reduce model risk inherent from reliance on a single model

