

Price Optimization - A Key Battle Field

- A <u>pricing scheme</u> that optimizes <u>business</u> <u>measure of success</u> in a <u>specific investment</u> <u>horizon</u>
 - Business measure includes, but not limited to, growth, profitability, customer satisfaction, cross-sell
 - Business goals can be achieved via also underwriting,
 - marketing, claims handling strategies - Investment horizon is key as price optimization is usually
 - served as Profit and Expense deferral mechanism

PRICE OPTIMIZATION

- Price Optimization in very short: Cost + Demand

CAS RPM Seminar © 2014

Slide 3 of 30

Demand Modeling

CAS RPM Seminar © 2014

- Relatively less studied
- Difficulty in collecting good quality quote information
- Not as many well-established literature available

PRICE OPTIMIZATION

Slide 5 of 30

• Many choose to use GLM to model instead

Demand Modeling:	Strong Premium interaction
A	Conversion Likelihood against Premium
CAS RPM Seminar © 2014	PRICE OPTIMIZATION Slide 6 of 30

Price Optimization - The opportunity

CAS RPM Seminar © 2014

• Since the battle field is relatively new, a simplified price optimization can serve as a good start. – e.g. Deriving a pricing algorithm by tempering 1 variable

PRICE OPTIMIZATION

Slide 10 of 30

Price Optimization – The opportunity

- Since the battle field is relatively new, a simplified price optimization can serve as a good start. – e.g. Deriving a pricing algorithm by tempering 1 variable
- As understanding of the mechanism increases, so the complexity of the price optimization
- Thus, the start-up cost of price optimization can be affordable

PRICE OPTIMIZATION

CAS RPM Seminar © 2014

Slide 12 of 30

Model Components to be considered

- Expense Modeling - Fixed vs. Variable
- Mid-term cancellation and Penalty
- Interest Rates

CAS RPM Seminar © 2014

- Conviction and Claims Rates
- Leads to claims/conviction free reward
 Feedback to the rating algorithm

Scope can vary a lot • By number of components: Claim Frequency, Severity, Conversion Retention Expanse

Severity , Conversion, Retention, Expense, Convictions, Mid-term cancellation etc...

PRICE OPTIMIZATION

Slide 16 of 30

Slide 17 of 30

• By the modeling techniques for the component: GLM, GAM, Neural Network, Boosting etc...

PRICE OPTIMIZATION

CAS RPM Seminar © 2014

Scope can vary a lot

- By number of components: Claim Frequency, Severity , Conversion, Retention, Expense, Convictions, etc...
- By the modeling techniques for the component: GLM, GAM, Neural Network, Boosting etc...

PRICE OPTIMIZATION

Slide 22 of 30

Slide 23 of 30

Slide 24 of 30

• By number of products: Auto + Property + Life

Scope can vary a lot

CAS RPM Seminar © 2014

- By number of components: Claim Frequency, Severity , Conversion, Retention, Expense, Convictions, etc...
- By the modeling techniques for the component: GLM, GAM, Neural Network, Boosting etc...
- By number of products: Auto + Property + Life
- By the constraints: dislocation limit, minimum growth, etc...

PRICE OPTIMIZATION

• By the projection periods

CAS RPM Seminar © 2014

CAS RPM Seminar © 2014

Results are highly sensitive to error

- Reliance on highly accurate underlying models - Combining models
 - Robustness of Assumptions
- A deviation can be magnified under long projection horizon.
- An Alternative is to specify a short to medium

PRICE OPTIMIZATION

Simulation - Goal

- Goal: Derive a price optimization algorithm to maximize net present value of the personal auto business
- The algorithm is in the form of multiplicative differentials
- Compare the results of various modeling techniques (GLM vs. GAM vs. data mining vs. actual)
- Attempt to quantify the modeling risk for various predictive models

PRICE OPTIMIZATION

Slide 25 of 30

Slide 26 of 30

Slide 27 of 30

Simulation - Underlying Assumption

CAS RPM Seminar © 2014

- Multi-line (Y/N)
- Years Claims Free (0-5 Years)
- Loyalty(0 to 10 Years)
- Age (25-50)
- Premium

• 4 models:

- Claims Frequency Poisson
- Conversion Bernoulli
- Retention Bernoulli
- Severity Assumed to be constant at 10,000 for simplicity

CAS RPM Seminar © 2014 PRICE OPTIMIZATION

Simulation – Assumptions (Cont'd)

- Interactions and non-linearity exist in all models
- Measure to optimized: Net Present Value of the portfolio
- We also assume all customers' lifespan is 50 years.
- Interest rate/ ROE/ yield = 10%

CAS RPM Seminar © 2014

PRICE OPTIMIZATION

Pricing with Demand Consideration

- Considering also the demand models, NPV will significantly increased.
- GLM LC + Demand NPV = 554%
- GAM LC + Demand NPV = 605%
- Data mining LC + Demand NPV = 713%
- Actual optimal NPV = 760%

	GLM	GAM	GAM + Demand	Data mining + Demand	Full Blown
300	0% 40	0% 50	0% 600)% 70	0% 800
	Ne	t Present Value	as Percentage	of First Year Pro	ofit
AS RPM	Seminar © 2014	P	RICE OPTIMIZATION		Slid

Ocnsistency of implementation Prospective vs. Retrospective Legal environment Competition