

Insurance Programs and Analytic Services

And The Winner Is...? How to Pick a Better Model

Part 1 – Introduction to GLM and Model Lift Hernan L. Medina, CPCU, API, AU, AIM, ARC

Verisk Insurance Solutions | ISO AIR Worldwide Xactware

Motivation

- Models that appear to be strong may have weaknesses
 - Fit may not be good
 - Model may be overfit
 - Wrong distribution may have been chosen
 - Results may not be stable across data subsets or over time
 - Results may be highly influenced by several records
 - Model may underperform the status quo
- Model development is a major investment, and before implementing a model, we should fully understand its strengths and weaknesses

Some Models Used by Actuaries

Understanding & Validating a Model

- Model Lift
 - How well does the model differentiate between best and worst risks?
 - Does the model help prevent adverse selection?
 - Is the model better than the current rating plan?

- Goodness of Fit
 - What kind of model statistics are available, and how do you interpret them?
 - What kind of residual plots should you consider, and how do you interpret them?
 - What are some considerations regarding actual versus predicted plots?

- Internal Stability
 - How well does the model perform on other data?
 - How will the model perform over time?
 - How reliable are the model's parameter estimates?

Model Lift

- Ability to differentiate between low and high cost policyholders
 - Sometimes called the "economic value" of the model
- Tools for measuring and illustrating model lift
 - Simple Quantile plots
 - Double lift charts
 - Gini index
 - Loss ratio charts

Model Lift – Simple Quantile Plots

- Creating a quantile plot
 - Use holdout sample.
 - Sort data based on predicted value (frequency, severity, loss cost).
 - Subdivide sorted data into quantiles (quartiles, quintiles, deciles) with equal weight (exposure, claim count).
 - Calculate average actual value and predicted value for each quantile and index to overall average.

Model Lift – Simple Quantile Plots Which Plot Shows Better Lift?

Model Lift – Double Lift Charts

- Creating a double lift chart
 - Sort data by ratio of model prediction to current premium
 - Subdivide sorted data into quantiles with equal exposure
 - For each quantile calculate average actual loss cost, average model predicted loss cost and the average loss cost underlying the current manual premium
 - Index the quantile averages to the overall averages.

Economics – The Gini Index

- Gini coefficient or Gini ratio
 - Named after Corrado Gini
- Measure of income inequality
 - Horizontal axis = percentage of country's population
 - Vertical axis = percentage of country's income
 - A = Area between line of equality and Lorenz Curve
 - B = Area beneath Lorenz Curve
 - Gini index = A / (A + B)

Model Lift – Simple Gini Index

- Adapting to car insurance
 - Assume claim frequency = 5%
- "The perfect model"
 - Prediction = actual loss, which is \$0 for 95% of exposures
 - Sort holdout data set by model prediction.
 - Horizontal axis = percentage of total car years
 - Vertical axis = Percentage of total losses
 - Gini Index = A / (A+ B) is very high

Model Lift – Simple Gini Index

- A real model
 - Prediction = expected loss cost
 > 0 for each policyholder
 - Sort holdout data set by prediction.
 - Horizontal axis = percentage of total car years
 - Vertical axis = Percentage of total losses
 - Gini Index = A / (A + B)
- A high Gini index implies
 - There is loss cost inequality
 - The model reflects it well

Model Lift – Simple Gini Index

- Gini Index measures how well the model classifies policyholders
- Exercise:
 - Assume Model X prediction = expected loss cost
 - Assume Model Z prediction = 2.0 (Model X prediction)
 - Which model has the highest Gini index?
- Model A has a Gini index of 15.9 and B has a Gini index of 15.4
 - Is that difference significant, or is it just a quirk of the holdout data?
 - Use bootstrap samples

Model Lift – Loss Ratio Charts 1

- Lift charts and Gini index
 - May be unfamiliar to some stakeholders
- Loss ratios
 - Widely used in the industry
- Ranking by predicted loss cost
 - Rank data into quantiles by predicted model loss cost
 - Calculate loss ratio for each quantile

Model Lift – Summary

- Simple Quantile plots
 - Illustrate how well the model helps prevent adverse selection
 - Compare against current rating plan or other model
- Double lift charts
 - Compare competing models
 - Compare new model against current rating plan
- Simple Gini Index
 - Summarizes model lift into one number
- Loss ratio charts
 - Puts lift in context most people in insurance industry can understand
 - Can be distorted by redundancy or inadequacy of current rating plan

Questions?