GLM III - The Matrix Reloaded

Claudine Modlin

Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.

Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding - expressed or implied - that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.

It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Agenda

- "Quadrant Saddles"
- The Tweedie Distribution
- "Emergent Interactions"
- Dispersion Modeling
- Modelling sparse claim types
- Driver Averaging
- Model Validation
- Man (with GLM) vs machine

towerswatson.com

towerswatson.com

Why are interactions present?

- Because that's how the factors behave
- Because the multiplicative model can go wrong at the edges
 - 1.5 * 1.4 * 1.7 * 1.5 * 1.8 * 1.5 * 1.8 = 26!

towerswatson.com

Selected Interaction: Vehicle Age x Policyholder Age					Man-			200 00		ar 1.000									
		Policyhold	der Age																
		N/A	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33 🔺
V	0	0.0000	0.0861	1.3433	-0.2833	-0.1112	-0.6276	-0.4940	-0.9551	0.9797	-0.6060	-0.8082	-0.6622	-0.8114	-1.2990	-0.4380	1.0881	0.9502	1.19
e	1	0.0000	-0.3007	-0.3838	0.6784	-1.0827	1.5070	0.2896	-0.3146	0.4689	1.1002	0.0152	-1,2990	0.2485	-0.1511	-0.4321	-1.5809	0.2436	0.87
	2	0.0000	0.5942	-0.5767	-1.3743	0.2555	1.5679	-0.3335	-0.3765	1.3385	1.3492	1.2615	-0.4747	0.9228	-0.1730	1.0359	-0.8213	-0.4516	1.09
C	3	0.0000	-0.0944	-1.6225	0.5895	-0.6255	0.4782	-1.4383	0.8664	-1.1652	0.3511	0.4272	-0.3256	-0.5740	-0.2573	-0.3694	0.3803	-0.6589	-0.7
1	4	0.0000	0.7341	-0.3873	-0.7813	0.1535	-1.0952	1.2768	0.0124	-0.2584	-0.2420	0.9662	0.8497	-0.9958	-1.4329	0.4942	-0.1446	1.6775	-0.3
e	5	0.0000	0.7834	-0.1512	0.6603	0.1302	-1.0948	-1.7072	-2.7967	-0.9688	-0.1618	-2.4681	-0.0443	-1.2045	0.6146	1.1614	1.8351	-1.5661	-0.2
A	6	0.0000	2.2230	-0.7901	-0.2768	-1.3420	-0.6245	1.1232	1.5019	0.5902	-0.0202	2.1912	0.1612	-1.7502	0.1939	-1.9662	1.5626	0.6414	-0.1
e	7	0.0000	-0.6514	0.4566	-1.4507	0.2114	-0.7806	-0.8530	-0.8567	0.0683	0.2886	-0.1552	1.3343	1.5336	-1.3740	1.5809	-1.1128	-0.8446	0.22
	8	0.0000	-0.2580	0.2443	-1.0002	0.2211	0.6874	0.8802	1.4942	-1.7197	2.0866	-0.1492	0.5193	1.0116	2.4261	0.1893	1.9269	-1.1336	-0.7
	9	0.0000	-1.4664	1.0500	-1.7925	-0.6770	0.6516	-1.4137	0.1120	-0.4953	-1.2055	-0.9852	-0.0994	0.4017	0.3569	-0.8758	-0.1560	0.6361	1.09
	10	0.0000	-0.3617	-0.4029	1.1780	2.4451	-0.3206	0.3776	1.2449	2.3793	-1.0895	-0.5111	-1.7375	1.5678	0.9283	-0.4278	-1.9636	1.7165	-1.8
	11	0.0000	-1.0350	1.2051	-0.2111	0.3438	-2.0220	1.4628	-0,7946	-0.1623	-0.4664	-0.0784	-0.2583	-1.3273	0.7165	-0.1358	-0.3915	0.2076	-0.6
	12	0.0000	1.1877	-0, 1965	1.8634	-0.2171	-0.4839	-0.7580	-0.2611	0.1789	-2.0832	0.1933	-0.9373	0.1420	-0.8524	1.2916	-1.8746	0.3296	1.12
	13	0.0000	-0.7453	0.8332	0.7936	0.6080	-0.1837	-0.3785	-0.1706	-0.1664	-0.3504	-0.4945	2.2726	0.5549	-0.6972	0.0935	0.4392	-0.6115	-1.6
	14	0.0000	-0.3047	0.8316	-0.8146	0.3477	0.3955	-0.2695	0.7418	-1.0084	-0.7375	-0.3714	1.5842	0.0045	0.6473	-0.9911	0.0465	-0.2720	0.33
	15	0.0000	-0.1280	-1.0783	1.4620	-0.0174	1.8673	2.3668	0.1103	0.3009	0.8215	-0.7305	-0.6188	0.3240	-1.0383	-1,2315	-1.0858	-1.6775	0.17
	16	0.0000	-0.7361	1.4342	2.1929	1.0053	1.2026	0.5048	0.0824	-0.1974	0.1701	1.3634	1.4209	1.2107	0.9176	0.2875	0.8263	-1.4325	1.85
	17	0.0000	-0.6590	-0.6840	3.9395	-0.2883	1.5156	1.8105	4.0477	0.1852	-0.9165	2.6069	-0.0802	0.0289	0.1457	0.0409	0.2029	0.1843	-0.1
	18	0.0000	-0.3412	-0.9500	0.6935	-0.5550	1.0272	1.5322	-0.6856	-0.6104	-0.4651	-0.4640	-0.3911	-0.5845	3.5499	-0.4948	-0.6204	-0.6273	-0.5
	19	0.0000	-0.4783	-0.8589	-0.6467	-0.5014	-0.6032	0.7630	-0,5475	-0.5006	-0.5502	-0.5398	-0.4846	-0.3470	1.6578	-0.4972	-0.4311	1.8195	-0.6
	20+	0.0000	-0.4626	-0.7337	0.9166	-0.4947	0.9693	-0.4324	-0.5751	-0.4146	-0.4206	-0.5885	-0.3000	1.7336	-0.2879	-0.4496	-0.2557	-0.4791	-0.4
	Unknown	0.0000	2.4147	-0.7042	-0.6024	-0.5451	-0.4055	1.4308	-0.4851	-0.3577	1.5886	-0.4599	-0.4927	1.7167	2.6352	-0.4718	2.0103	1.5534	-0.4
		11 0000	0.0010	0 5403	0.0000	0 0000	0 0007	0.0000	0 1000	0 7545	0 1010	0 1010	0.0000	C 1947	0 2250	0 4154	0.0100	0.0000	10.41
	Graph		Log								Un-Group	Group		Save	Hide Values	Minimum W	eight 0		
	Back															Shortlist	Previou	JS	Next

Example

towerswatson.com

Example

Example

towerswatson.com

© 2014 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Saddles - model comparison Motor frequency - out of sample

towerswatson.com

Saddles - model comparison Motor frequency - out of sample

towerswatson.com

Saddles - model comparison Motor frequency - out of sample

towerswatson.com

Saddles - model comparison Motor frequency - out of time

towerswatson.com

Saddles - model comparison Motor renewals - out of sample

towerswatson.com

Agenda

- "Quadrant Saddles"
- The Tweedie Distribution
- "Emergent Interactions"
- Dispersion Modeling
- Modelling sparse claim types
- Driver Averaging
- Model Validation
- Man (with GLM) vs machine

Tweedie GLMs

• Consider the following empirical probability distribution function

Tweedie GLMs

• Raw pure premiums

- Incurred losses have a point mass at zero and then a continuous distribution
- Poisson and gamma not suited to this
- Tweedie distribution has
 - point mass at zero
 - a parameter which changes shape above zero

$$f_{Y}(y;\theta,\lambda,\alpha) = \sum_{n=1}^{\infty} \frac{\left\{ (\lambda \omega)^{1-\alpha} \kappa_{\alpha} (-1/y) \right\}^{n}}{\Gamma(-n\alpha)n! y} \exp\{ \lambda \alpha [\theta_{0}y - \kappa_{\alpha}(\theta_{0})] \right\} \quad \text{for } y > 0$$
$$p(Y=0) = \exp\{ -\lambda \omega \kappa_{\alpha}(\theta_{0}) \}$$

towerswatson.com

Formulization of GLMs

• Generally accepted standards for link functions and error distribution

Observed Response	Most Appropriate Link Function	Most Appropriate Error Structure	Variance Function		
		Normal	μ ^ο		
Claim Frequency	Log	Poisson	μ¹		
Claim Severity	Log	Gamma	μ²		
Claim Severity	Log	Inverse Gaussian	μ ³		
Raw Pure Premium	Log	Tweedie	μ ^τ		
Retention Rate	Logit	Binomial	μ (1-μ)		
Conversion Rate	Logit	Binomial	μ(1- μ)		

Formulization of GLMs

• More formally:

- Tweedie's Variance function: $V(\mu) = \mu^p$
 - p=1 Poisson
 - p=2 Gamma
 - 1<p<2 Poisson/Gamma process
- Other concerns
 - Need to estimate both ϕ and p when fitting models
 - Typically p≈1.5 for incurred claims
Vehicle age - frequency

towerswatson.com

© 2012 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Vehicle age - amounts

towerswatson.com

© 2012 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Vehicle age - pure premium

towerswatson.com

© 2012 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Gender - frequency

Gender - frequency

42

towerswatson.com

Gender - amounts

towerswatson.com

© 2012 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Gender - amounts

towerswatson.com

© 2012 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Gender – pure premium

towerswatson.com

© 2012 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Tweedie GLMs

- Helpful when it's important to fit to incurred costs directly
- Similar results to frequency/severity traditional approach if frequency and amounts effects are clearly weak or clearly strong
- Distorted by large insignificant effects
- Removes understanding of what is driving results
- Smoothing harder

Agenda

- "Quadrant Saddles"
- The Tweedie Distribution
- "Emergent Interactions"
- Dispersion Modeling
- Modelling sparse claim types
- Driver Averaging
- Model Validation
- Man (with GLM) vs machine

- Take models
- Take relevant mix of business
 - eg current in force policies
- For each record calculate expected frequencies and severities according to the models
- For each record, calculate expected total cost of claims "C"
- Fit a GLM to "C" using all available factors

		PD	PD	BI	BI
		Numbers	Amounts	Numbers	Amounts
Intercept		32%	\$1000	12%	\$4860
Sex	Male	1.000	1.000	1.000	1.000
	Female	0.750	1.200	0.667	0.900
Area	Town	1.000	1.000	1.000	1.000
	Country	1.250	0.700	0.750	0.833

Policy	Sex	Area	NUM1	AMT1	NUM2	AMT2	CC1	CC2	RISKPREM
82155654	Μ	Т	32%	1000	12%	4860	320	583.20	903.20
82168746	F	Т	24%	1200	8%	4374	288	349.92	637.92
82179481	Μ	С	40%	700	9%	4050	280	364.50	644.50
82186845	F	С	30%	840	6%	3645	252	218.70	470.70

Except...

Policy	Sex	Area	NUM1	AMT1	NUM2	AMT2	CC1	CC2	RISKPREM
82155654	M	Т	32%	1000	12%	4860	320	583.20	903.20
82168746	F	Т	24%	1200	8%	4374	288	349.92	637.92
82179481	Μ	С	40%	700	9%	4050	280	364.50	644.50
82186845	F	С	30%	840	6%	3645	252	218.70	470.70

- The global risk premium is not multiplicative
- In the town, women have a modelled claim cost 29% lower than men
 - 637.92/903.20=0.706
- In the country, women have a modelled claim cost 27% lower than men
 - 470.07/644.50=0.730

To solve...

Policy	Sex	Area	NUM1	AMT1	NUM2	AMT2	CC1	CC2	RISKPREM
82155654	M	Т	32%	1000	12%	4860	320	583.20	903.20
82168746	F	Т	24%	1200	8%	4374	288	349.92	637.92
82179481	Μ	С	40%	700	9%	4050	280	364.50	644.50
82186845	F	С	30%	840	6%	3645	252	218.70	470.70

• We can capture this result exactly with an interaction

	This image cannot currently be displayed.	
	-	
towerswatson.co	© 2014 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Wat	son and Towers Watson client use only.

Example "emergent" interaction

This image cannot currently be displayed.

"Emergent" interactions

- In the above examples the interaction "emerged" from the risk premium step
- Emergent interactions are *not* risk insights, there is no subtle risk effect we have just discovered
 - The different behaviour is by peril, and the rating factors are just bad proxies for the peril effects
- Emergent interactions are corrections to fix problems we have introduced
- Best solution is by peril pricing
 - Reflects true behaviour
 - Underlying models simple to understand and implement
- If not, check for emergent interactions in the risk premium

© 2014 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Agenda

- "Quadrant Saddles"
- The Tweedie Distribution
- "Emergent Interactions"
- Dispersion Modeling
- Modelling sparse claim types
- Driver Averaging
- Model Validation
- Man (with GLM) vs machine

Modeling the Insurance Risk

ISSUE:

Heterogeneous exposure bases

- Different policies within the same line can cover entirely different structures (i.e. commercial property)
- Goal of a predictive model
 - Ideally would like to separate the heterogenous exposure bases
 - Joint-modeling techniques and quasi-likelihood functions allow for analysis of heterogeneous environment without separation

Two concentrations suggests two perils: split or use joint modeling

Heterogeneous Exposure Bases

- If possible should be modeled separately
 - If model together, exposures with high variability may mask patterns of less random risks
 - If loss trends vary by exposure class, the proportion each represents of the total will change and may mask important trends
 - Independent predictors can have different effects on different perils
- If cannot, use joint modeling techniques to improve overall fit

Generalized Linear Models

• Formulation of deviance – logarithm of a ratio of likelihoods

$$\frac{\mathrm{D}}{\mathrm{a}(\varphi)} = \ln\!\left(\frac{\mathrm{Act}}{\mathrm{Exp}}\right)^2$$

Where:

Act =
$$f_{Y}(y; \tilde{\theta}, \phi) \ni E(Y) = y = b'(\tilde{\theta})$$

Exp=f_Y(y;
$$\hat{\theta}, \phi$$
) \ni E(Y)= $\hat{\mu}$ =b($\hat{\theta}$)

Then:

$$\frac{D}{a(\phi)} = \ln \left(\frac{f_{Y}(y;\tilde{\theta},\phi)}{f_{Y}(y;\hat{\theta},\phi)} \right)^{2} = 2 \times \left[\frac{y\tilde{\theta} - y\hat{\theta} - b(\tilde{\theta}) + b(\hat{\theta})}{a(\phi)} \right]$$

© 2012 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

62

towerswatson.com

Generalized Linear Models

- Analyzing the scale parameter
 - When modeling homogeneous data

$$a(\phi) = \frac{\phi}{\omega} \Rightarrow \phi = \frac{D}{dof}$$

- Heterogeneous data requires a more rigorous definition of the scale function
 - Scale parameter could vary in a systematic way with other predictors
 - Construct and fit formal models for the dependence of both the mean and the scale

Dispersion Model Form

- Double generalized linear models
 - Response model

$$Y \sim f_{Y}(y;\theta;\phi)$$
$$E(Y) = b'(\theta)$$
$$Var(Y) = \frac{\phi b'(\theta)}{\omega}$$

• Dispersion model

$$D \sim f_{D}(d;\xi,\tau)$$
$$E(D) = b'(\xi)$$
$$Var(D) = \frac{\tau b'(\xi)}{\omega}$$

Where

 $d = \frac{(Y - \mu)^2}{V(\mu)}$

Dispersion Model Form

- Dispersion adjustments
 - Pearson residual has excess variability (deviance residual has bias)

Distribution	Adjustment
Normal	0
Poisson	f/(2m)
Gamma	3f

Parameter in the adjustment term is the scale parameter from the original response model

Dispersion Model Results

• Dispersion model is integrated with original response model

	Response	Weight
Initial Response Model	Loss / Exposure	Exposure
Dispersion Model	Squared Pearson Residual	Exposure/ (Exposure + Adjustment)
Final Response Model	Loss / Exposure	Exposure/ Squared Pearson Residual

Agenda

- "Quadrant Saddles"
- The Tweedie Distribution
- "Emergent Interactions"
- Dispersion Modeling
- Modelling sparse claim types
- Driver Averaging
- Model Validation
- Man (with GLM) vs machine

Amplification of the BI signal using PD experience

- Fit straight to BI
- Use PD model as a guide in free fitting BI
- Use PD model structure
- Offset PD relativities onto BI data as starting point
- BI/PD proportion model:
 - BI frequency = BI/PD proportion * PD frequency

© 2014 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

© 2014 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

© 2014 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

© 2014 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

- When modeling BI set PD fitted values to be offset term
- GLM will seek effects over and above assumed PD effect

(1) GLM on BI claims on all the data - the "correct" answer

(2) Traditional GLM on BI claims on the "small company"(3) Propensity reference model on BI claims of PD claims

Example result

towerswatson.com

© 2014 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Example result

© 2014 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Agenda

- "Quadrant Saddles"
- The Tweedie Distribution
- "Emergent Interactions"
- Dispersion Modeling
- Modelling sparse claim types
- Driver Averaging
- Model Validation
- Man (with GLM) vs machine

Household Averaging

- Historically companies assigned operators to vehicles for the purpose of rating
- More recently driver averaging strategies are deployed to capture household
- Average may consider all drivers or a subset
 - This choice may affect other household composition factors
- Types of averages
 - Straight vs. geometric average
 - Weighted average
 - Modified
 - Average/assignment hybrid
- Modeling data needs to mimic the transaction

Model Design

- In all modeling projects, it is imperative that the data set up mimic the rating
- Consider the following example...

Vehicle	Operator	Vehicle Rate		Operator	Class Factor
V1	Dad	\$500		Dad	0.80
V2	Mom	\$450		Mom	0.85
	·		' [Junior	2.80

Assume Mom had a \$1000 claim in Dad's car

Assignment

 <u>Driver assignment methodology</u> each record represents a single vehicle with one assigned operator

Veh	Ор	Sym	MYR	Age	Sex	Туре	Yths	Drvrs	Vehs	Ехр	Clm	Losses	Prem
V1	Junior	17	2006	16	Μ	00	1	3	3	1	1	1,000	1,400.00
V2	Mom	17	2005	43	F	PO	1	3	3	1	0	0	382.50

- Operator characteristics based on <u>assigned operator</u>
- Vehicle characteristics based on vehicle
- Policy characteristics "catch" other drivers
- Losses assigned to vehicle

Straight Average

• Straight average methodology:

$$VehicleFactor \times \frac{(Op1Factor + Op2Factor + Op3Factor)}{3}$$

• Which can be deconstructed:

$$VehicleFactor \times \frac{(Op1Factor)}{3}$$
$$VehicleFactor \times \frac{(Op2Factor)}{3}$$
$$VehicleFactor \times \frac{(Op3Factor)}{3}$$

Straight Average

 <u>Straight average methodology</u> each record represents a single vehicle and operator combination

Veh	Ор	Sym	MYR	Age	Sex	Yths	Drvrs	Vehs	Exp	Clm	Losses	Prem
V1	Dad	17	2006	45	м	1	3	3	1/3	0	0	133.33
V1	Mom	17	2006	43	F	1	3	3	1/3	1	1,000	141.67
V1	Junior	17	2006	16	Μ	1	3	3	1/3	0	0	466.67
V2	Dad	17	2005	45	Μ	1	3	3	1/3	0	0	120.00
V2	Mom	17	2005	43	F	1	3	3	1/3	0	0	127.50
V2	Junior	17	2005	16	м	1	3	3	1/3	0	0	420.00

- Policy characteristics are same, but less predictive
- Exposure split amongst the vehicle
- Losses assigned to vehicle/operator combination
- iid is a major concern
- What about Comprehensive?

Geometric Average

• Geometric average methodology:

 $VehicleFactor \times (Op1Factor + Op2Factor + Op3Factor)^{1/3}$

• No direct decomposition

Geometric Average

• <u>Geometric methodology</u> each record represents a single vehicle

Veh	Sym	MYR	# of Dads	# of Moms	# of Juniors	Ехр	Clm	Losses	Prem
V1	17	2006	1/3	1/3	1/3	1	1	1,000	619.72
V2	17	2005	1/3	1/3	1/3	1	0	0	557.74

- Policy characteristics are same, but less predictive
- Predictors are translated to counts
- Losses assigned to vehicle
- More challenging to add operator interactions or variates

Weighted Average

• Weighted average methodology for a straight average approach

Veh	Ор	Sym	MYR	Age	Sex	Туре	Yths	Drvrs	Vehs	Exp	Clm	Losses	Prem
V1	Dad	17	2006	45	м	PO	1	3	3	1/3	0	0	133.33
V1	Mom	17	2006	43	F	OC	1	3	3	1/3	1	1,000	141.67
V1	Junior	17	2006	16	Μ	OC	1	3	3	1/3	0	0	466.67
V2	Dad	17	2005	45	Μ	OC	1	3	3	1/3	0	0	120.00
V2	Mom	17	2005	43	F	PO	1	3	3	1/3	0	0	127.50
V2	Junior	17	2005	16	м	OC	1	3	3	1/3	0	0	420.00

- Creates a relationship between the vehicle and the operator
- Uses the model to determine the weights
- More *accurate* as it requires more information

 $VehicleFactor1 \times \frac{(Op1Factor * PO + Op2Factor * OC + Op3Factor * OC)}{3}$

Agenda

- "Quadrant Saddles"
- The Tweedie Distribution
- "Emergent Interactions"
- Dispersion Modeling
- Modelling sparse claim types
- Driver Averaging
- Model Validation
- Man (with GLM) vs machine

Validate Models

Holdout samples

- Holdout samples are effective at validating model
 - Determine estimates based on part of data set
 - Uses estimates to predict other part of data set

Predictions should be close to actuals for heavily populated cells

Validate Models

Gains curves

• Compare predictiveness of models

© 2012 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Validate Models Lift curves

• Compare predictiveness of models

• More intuitive but difficult to assess performance

Validate Models X-Graphs

towerswatson.com

© 2012 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Validate Models

Residual analysis

• Recheck residuals to ensure appropriate shape

Is the contour plot symmetric?

Does the Box-Whisker show symmetry across levels?

Agenda

- "Quadrant Saddles"
- The Tweedie Distribution
- "Emergent Interactions"
- Dispersion Modeling
- Modelling sparse claim types
- Driver Averaging
- Model Validation
- Man (with GLM) vs machine

VS

towerswatson.com

© 2014 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

VS

VS

Underwriting

Claims

Drivers of elasticity

Claims management companies

BI models - "insurance" and "compensation" risk

