RMS SEVERE WEATHER MODELING UPDATE

Matthew Nielsen

Director - Americas Model Product Management

WHAT IS NEEDED? CAT MODEL INPUT AND OUTPUT

Input (from user)

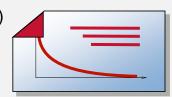
Address

Physical characteristics of insured buildings

- Occupancy
- Year Built
- Construction
- Number of Stories
- Floor Area
- Other characteristics...

Coverages

- Structures, Contents, Additional Living/Loss of Use
- Limits, Values, Deductibles
- Reinsurance


Output (key metrics for business decisions)

Average Annual Loss (AAL): the amount of modeled premium an insurer needs to collect in order to cover the average peril loss over time

Combination of event frequency and mean event loss

Exceedance Probability (EP)

curve: the probability of exceeding a loss level in a given year. Most often referred to as 'return period'.

Two types of EP curve:

- Occurrence Exceedance Probability (OEP)
- Aggregate Exceedance Probability (AEP)

FRAMEWORK FOR MODELING SEVERE CONVECTIVE STORMS

MODEL COMPONENTS

Includes losses from:

- Hail
- Tornado
- Straight-line winds
- Lightning

Includes events such as:

- Large outbreaks
- Regional outbreaks
- Isolated occurrences
- Small dollar losses from a single hailstorm or wind event

Low Frequency
Event Set

High Frequency
Event Set

HISTORICAL CHALLENGES IN MODELING SCS RISK

Data Challenges

- Incomplete observational and historical data record
- Gaps and biases
- Changing claims practices
- Concerns about model's ability to reflect historical loss experience

Technology Challenges

- Trade off between meaningful results and a model that can be used
- Resolution vs. runtime
- Concerns about model's ability to capture the spatial nature of the risk

Limited Business Benefits

- Limited value beyond portfolio management
- Too much uncertainty at sub-regional level
- Low confidence in model output

Result: SCS Catastrophe models have not been widely used

2014 MODEL UPGRADE

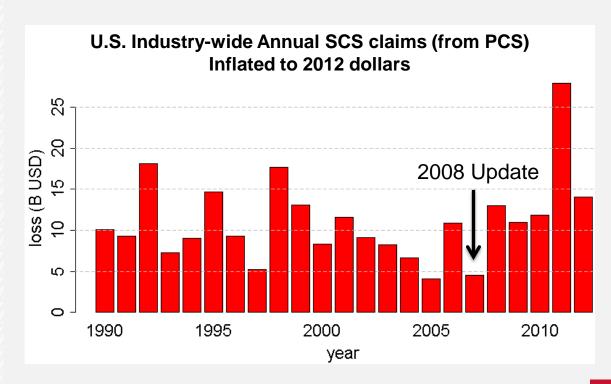
New Data

- \$84 billion in industry loss data ('08-13)
- Occurrence of recent tail events
- \$5 billion in location-level claims data

New Methods

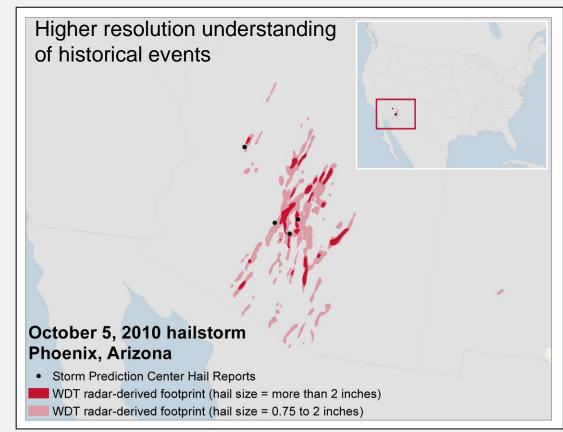
- Improving representation of tail risk
- Improving spatial representation of hazard, particularly hail and tornado

New Insights

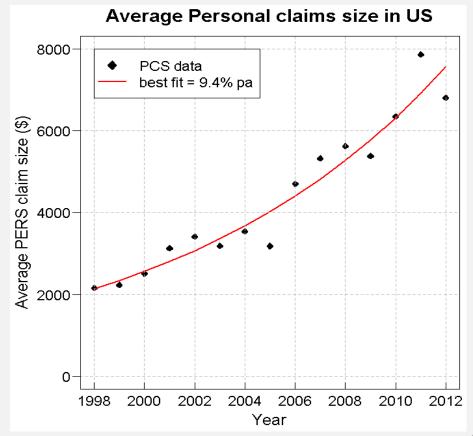

- Trends into claims severity and inflation
- More granular hazard and vulnerability risk differentiation

Recalibrated and Enhanced SCS Model

INCREASES IN EVENT SEVERITY


- Increasing populations and property exposures at risk
- Major SCS losses are happening
- \$84 billion in insured losses from SCS outbreaks and extreme events 2008-2013
- Go beyond what is captured in claims and historical records

NEW INSIGHTS INTO HAZARD RISK DIFFERENTIATION


- Need to accurately represent small-scale nature and variability of SCS hazard
- Recalibrated hazard module against thousands of hail and wind observations from 70+ new events
- Focus should be on event attributes that drive losses (e.g. area coverage)

TRENDS IN HAIL CLAIMS

- Trends of increasing claims severity and claims inflation
- Becoming more apparent over time, particularly in high-risk areas
- Replace vs. Repair mentality for contractors

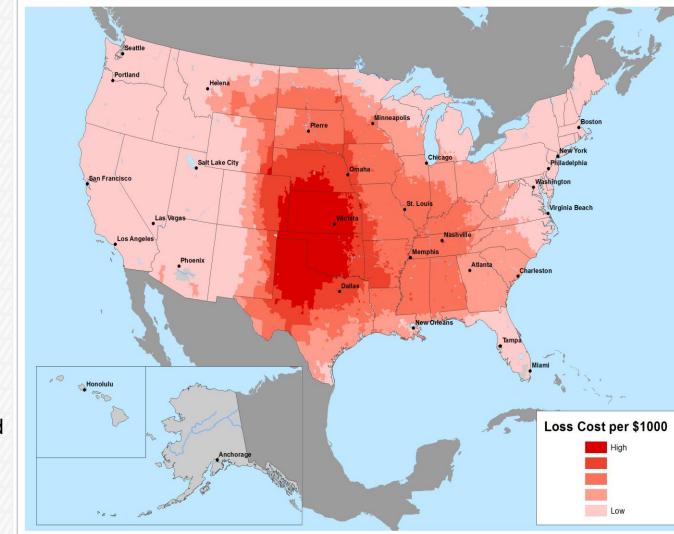
*Inflation has been removed from losses

TORNADO DAMAGE VALIDATION

Recent events have provided an opportunity to validate real-time tornado damage

- 1) Joplin 2011 tornado reports
- 2) Tuscaloosa 2011 tornado damage reports
- 3) Moore, OK 2013 tornado recon

SCS IS A MATERIAL RISK TO THE INDUSTRY


- Industry-wide SCS AAL is second only to hurricane
- Drives more than 1/3 of all U.S. peril AAL:
 - \$11-13 B USD
- Drives more than 1/3 of all Canada peril AAL:
 - \$400-450 M USD
- Highest SCS risks:
 - Aggregate covers
 - Auto Lines
 - Large single location risks

U.S. AAL by Peril	
Peril	Percentage
Hurricane	40%
SCS	35%
Flood	10%
Winterstorm	5%
Earthquake	5%
Wildfire	<2%
Total	100%

RMS' VIEW OF SCS RISK

- It's not just Tornado Alley (about 1/3 of SCS AAL) that's prone to significant SCS risk:
 - Northern Plains (MT, ND, SD, WY)
 - Texas
 - Southeast (AL, GA, LA, MS)
- Annual likelihood of an event causing X in insured losses:
 - \$10B → 2%

What's Coming?

U.S. Flood Models

GOAL:

Develop modeling solution covering all sources of flooding in US

- ✓ Tropical Cyclone Surge
- Tropical Cyclone Precipitation
- Non-Tropical Cyclone Precipitation

Suite of US Flood products:

✓ Storm Surge within Hurricane Model

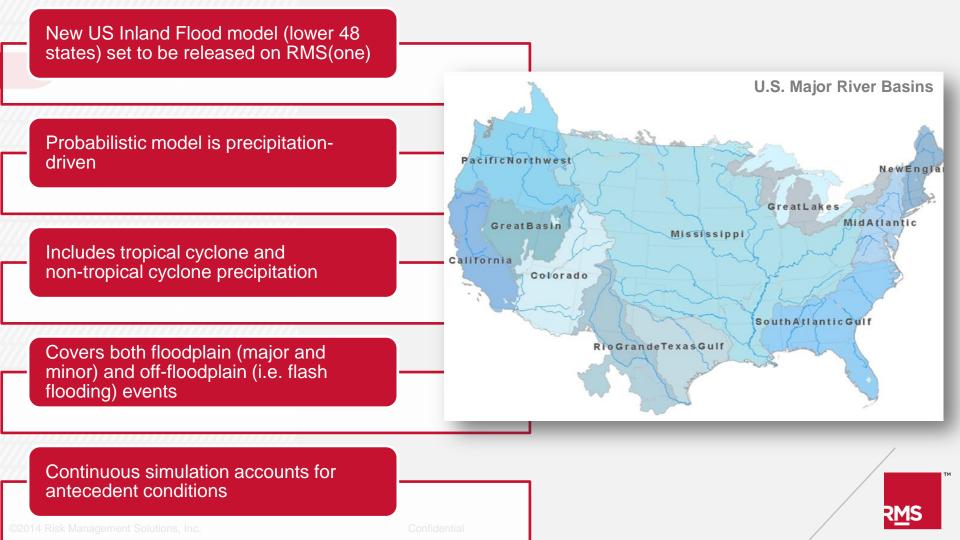
GOAL:

Develop modeling solution covering all sources of flooding in US

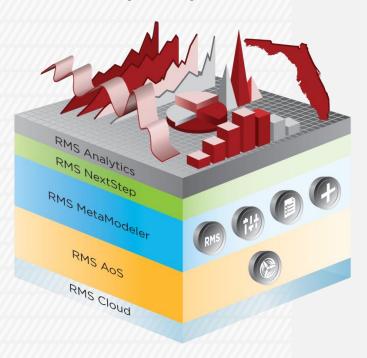
- ✓ Tropical Cyclone Surge
- ☐ Tropical Cyclone Precipitation
- Non-Tropical Cyclone Precipitation

Suite of US Flood products:

- ✓ Storm Surge within Hurricane Model
- □ US Flood HD Model coming soon!


GOAL:

Develop modeling solution covering all sources of flooding in US


- Tropical Cyclone Surge
- ☐ Tropical Cyclone Precipitation
- Non-Tropical Cyclone Precipitation

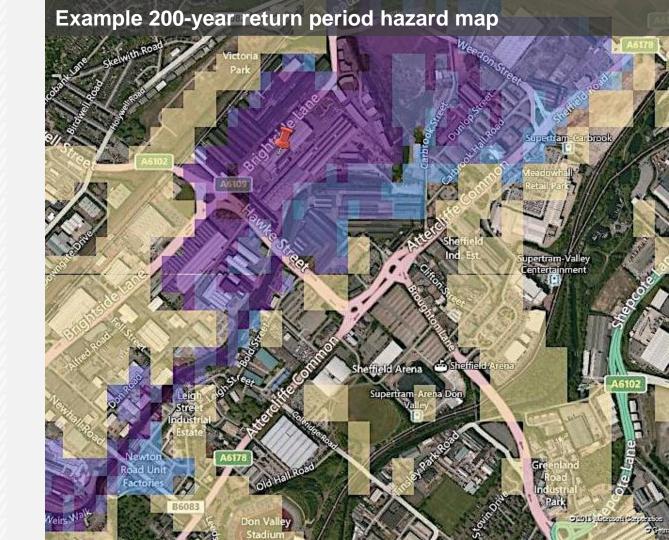
Suite of US Flood products:

- ✓ Storm Surge within Hurricane Model
- ☐ US Flood Hazard Data Product coming soon!
- US Flood HD Model

BUILDING MODELS IN RMS(ONE)

- HD Simulation: Allows for continuous simulation of events
 - Similar meteorological events can lead to very different hazard & loss events
 - Antecedent conditions strongly influence the severity of a flood
 - Able to capture clustering and correlation
- New financial model enabled by Contract Definition Language (CDL)
 - Properly model hours clause and complex flood policy terms
- Performance offered by the Cloud

RMS FLOOD HAZARD DATA PRODUCT



- Coverage: 48 states & District of Columbia
- All sources of flooding:
 - Coastal flooding from storm surge
 - Tropical cyclone precipitation
 - Non-tropical cyclone precipitation
- Return periods:
 - Multiple return periods, 20 years to 1000 years
 - Catchments by hydrological regions
- RMS(one) functionality:
 - Location-level underwriting, flood zone lookup frequency and severity with return period and flood depth
 - Accumulation management
 - Flood hazard visualization

RMS FLOOD HAZARD DATA PRODUCT

Coming soon!

