Modern Hurricane Ratemaking: Pricing at the Location Level

Severe Weather Workshop 2013 CAS Ratemaking and Product Management Seminar Washington D.C. March 30, 2014 Matt Chamberlain, FCAS, MAAA

Actuary

Milliman, Inc.

matt.chamberlain@milliman.com

Notional Variable Resolution Grid

- Efficient use of locations
- Vary along multiple risk dimensions:
 - o DTC
 - o Surface roughness
 - o Region
 - Elevation (?)
- Resolution of the catastrophe model

In-force book or Notional Market Portfolio

- Locations can be determined using:
 - Parcel data from county records
 - Allocation based on Census Data
- Imputation of other property characteristics, such as:
 - o Year Built
 - o Square Footage
 - Construction Type
 - o Number of Stories
 - Wind Mitigation Features

Geographic Elements of Hurricane Pricing for Homeowners Insurance

- This presentation focuses on states in the Southeastern United States with substantial Hurricane risk
- Similar approach can be used in some other regions and for some other perils
- Distance to Effective Coast
- Surface Roughness
- Storm Surge
- Flood

Distance to Effective Coast

- Motivation for using Distance to Coast
- Definition of coastline

Improved Geographic Resolution

Moving from territories to physically-based rating variables

- Distance to coast
- Number of bins
- Regions
- Polynomial versus piecewise
- Surface roughness

Distance to Effective Coast Curve

Example Selected Distance to Effective Coast Curve

Distance to Effective Coast

Example Selected Distance to Effective Coast Curve

Distance to Effective Coast

Land Use/ Land Cover in Florida

Effective Surface Roughness in Florida

Is Distance to Effective Coast enough?

Surface Roughness

Distance																													
to Coast	LOW															HIC	ЗH												
LOW	17	18	15	12	12	12	11	11	9	12	12	11																	
	16	17	14	13	12	12	12	10	9	8							6			5	5								
	16	15	16	13	12	12	11	9	11	10	9	10	8	8	7			6			5				_				
			9	10	12	11	11	11	11	10	10	10	8	8	8	8	9	9	7	5	5	9		4					
				10	11	10	9	9	9	9	8	7	9	7	7		6	5	5	4			4	4	4	7	7	7	
				10	12	10	9	9	7	7	7	7	7	7	8	5	7	5	5			4		4	7	6		7	
			9	10	12	10	10	11	7	6	6	6	6	5	5	5	5	5	5	5	5	4	6	4			5		
			10	12	10	10	10	8	7	6	7	5	6	5	4	5	5	5	5	5	4	4	5	4	4				
			12	11	8	7	9	9	7	6	8	5		5	5	5	4	6	4	4	4	3	3	4		5	4	5	
			15	9	9	8	6			9	5	6	5	5	5	4	4	4	4	4	4	4		3	4	3	3	4	4
			11	9	8	10	14			5	12		4	4	4	4	4	4	4		4	3	3			3	3	4	
		15		10	8	12				4		6	6	4	4	4	4	4	3	4	3	3	3		3				
	15	12	10	10	11							7	4	4	4	4	4	3	4	3	4	3	3	3					
		11	13	13	13				7	7	4	4	4	4	4	4			3	3		3	3						
	13	13	13	14	10	15	10	8	4		4	4	4	4			3	3	3	3	3	3	3	3	3				
HIGH	13	13	13	12	8	12				4	4	4	4	4			3	3	3	3	3	3		3	3				

Example Selected Surface Roughness Curve

Storm Surge

- Storm Surge is not a covered peril under standard Homeowners insurance policies and premiums do not contemplate losses arising from storm surge
- It can be difficult to determine the cause of damage after an event, resulting in some non-covered losses being paid
- This risk can be mitigated through underwriting
- Old-fashioned restrictions: distance to tidal water or elevation
- New approach: a Minimum Permissible Elevation based on Zip Code and distance-to-tidalwater
- Another option is to offer flood coverage

Distance to Tidal Water

How does this differ from Distance to Effective Coast?

Storm Surge (Elevation)

Storm Surge (Distance to Tidal Water)

Examples of underwriting rules for Storm Surge

EXAMPLE OF OLD RULE:

INELIGIBLE

Any risk within 2,500 feet of the Gulf of Mexico or Atlantic Ocean. Any risk within 1,000 feet of any other large body of water. Any coastal risk located on land with an elevation less than 14 feet above mean high tide

EXAMPLE OF NEW ZIP-CODE BASED RULE:

EXAMPLE OF NEW RULE:

Distance to Tidal Water	Minimum Permissible Elevation
Less than 0.05	16
0.05 to 0.06	15
0.06 to 0.08	14
0.08 to 0.12	13
0.12 to 0.16	12
0.16 to 0.22	11
0.22 to 0.30	10
0.30 to 0.40	9
0.40 to 0.55	8
0.55 to 0.76	7
0.76 to 1.04	6

	DISTANCE TO TIDAL WATER														
Zip	<0.025	0.025 to 0.05	0.05 to 0.075	0.075 to 0.1	0.1 to 0.15	0.15 to 0.25	0.25 to 0.5	0.5 to 1	1 to 4	4 to 5					
Code	miles	miles	miles	miles	miles	miles	miles	miles	miles	miles					
32033	8	7	6	5	4	3	1	0	-1	-2					
32034	22	20	19	19	18	16	15	13	12	10					
32046	23	21	20	20	18	17	15	14	12	11					
32080	19	17	16	16	15	13	12	10	9	7					
32081	9	8	7	6	5	4	2	1	0	-1					
32082	12	10	9	9	8	6	5	3	2	0					
32084	11	9	8	7	6	5	3	2	0	0					
32086	10	8	7	7	6	4	3	1	0	-1					
32095	12	10	9	8	7	6	4	3	1	0					
32118	18	17	16	15	14	13	11	9	8	6					
32127	9	8	7	6	5	4	2	0	0	-2					

18

Example of Underwriting Rule for Storm Surge

Managing Storm Surge risk through rating: Flood Insurance

Current Flood Rating:

- Subsidized
- Not very granular
- Mostly based on flood zone (VE, A, X, X500...)
- Uses other property characteristics
- Elevation relative to Base Flood Elevation is used in some areas

Private Flood Insurance?

Private Flood Insurance

- Private Excess already available
- Primary flood insurance
- Future developments

Examples of Applications outside of the United States

- Hurricane in the Caribbean and Central America
- Flood Insurance in the Europe
- For example, there are only four Zürs zones in Germany.
- Typhoons in Asia and Australia
- Distance to Effective Coast and Surface Roughness
- European Windstorm?

Questions?

