Session RR3: Allocating Capital - A Hands-on Case Study

Robert F. Wolf, FCAS, CERA, MAAA

Casualty Actuarial Society
Ratemaking and Product Management Seminar
April 1, 2014

Agenda

- What capital allocation is and why we do it
- Key considerations in allocating capital
- The Ruhm-Mango-Kreps algorithm
- Representative methodologies
- Case study on allocating capital using the Ruhm-Mango-Kreps algorithm
- Additional considerations in allocating capital

Capital Allocation

- Capital allocation is a theoretical exercise
- Any business segment has access to the entire available capital of the firm
- For some lines capital consumption is more likely
 - Property insurance subject to catastrophic loss
 - Workers compensation in areas with concentration of employees
- Object is to reflect the likelihood of a business segment needing to utilize corporate capital

No method yet developed is ideal for this purpose

Reasons for Allocating Capital

Pricing

 Use the capital allocation to determine the investment income generated for rate calculations

Risk management

- Determine the risk adjusted rate of return as expected return divided by capital allocation
- Use the risk adjusted return to decide if a business segment (line or investment) is worth continuing

Performance evaluation

Reward performance based on risk adjusted returns

Key Considerations in Allocating Capital

- Must be accepted within the organization
- Sums to the total capital of the organization
- Stable over time
- Allocation not affected by other business segments
- No negative allocations
- Appropriate for particular application
- Coherent

No single method meets all these considerations

Ruhm-Mango-Kreps Algorithm

- Based on conditional probability
- Incorporates a riskiness leverage factor (RLF)
- Application of Ruhm-Mango-Kreps
 - Simulate a large number of potential outcomes
 - Rank the iterations by aggregate results
 - Determine an RLF for each aggregate outcome
 - Apply corresponding RLF to each segment's result whether it consumes or supplies capital
 - Allocate capital based on total capital charges
- Advantage/disadvantage of Ruhm-Mango-Kreps
 - Flexible enough by choice of RLF to duplicate any other capital allocation method

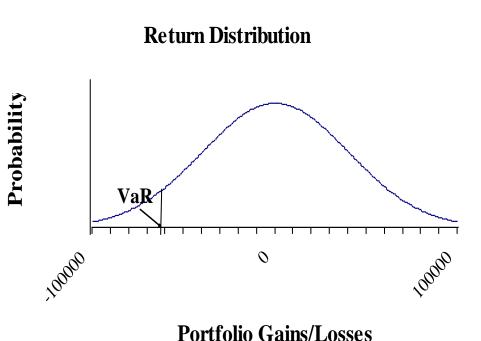
Ruhm-Mango-Kreps Algorithm TVaR Example (based on 80% VaR)

Scenario	U/W Prop	U/W Cas	Invest	Total	Risk Wt.
1	-1200	-500	650	-1050	1
2	-700	200	-500	-1000	1
3	-600	-200	700	-100	О
4	100	900	300	1300	О
5	-100	-200	1900	1600	О
6	500	-200	1400	1700	О
7	200	-500	2100	1800	О
8	100	-600	2500	2000	О
9	1200	800	700	2700	О
10	1100	700	2200	4000	О
					2
Exp. Val.	60	40	1195	1295	
Risk-W EV	-950	-150	75	-1025	
Risk Mea	-1010	-190	-1120	-2320	
Cap. All	0.435345	0.081897	0.482759		

Capital Allocation Methods to be Considered

- Semi-variance
- Value-at-Risk (VaR)
- Tail Value-at-Risk (TVaR)
- Marginal capital Myers-Read

Semi-variance


- Only considers downside variance
- Impact of risk is proportional to the square of the difference from the mean
- For RMK approach, RLF = μ-X if μ>X, otherwise 0

Value-at-Risk - A Definition

- Value-at-Risk (VaR) is a statistical measure of possible portfolio losses
 - A percentile of the distribution of outcomes
- VaR is the amount of loss that a portfolio will experience over a set period of time with a specified probability
- Thus, VaR depends on some time horizon and a desired level of confidence

Value-at-Risk - An Example

- 95% probability and oneday holding period
- VaR is the one-day loss that will be exceeded only 5% of the time
- In the example, the VaR is about \$60,000
- For the RMK approach, the RLF is 1 if the cumulative probability is within ε of the selected VaR probability level, 0 otherwise

Tail Value-at-Risk

- Tail VaR considers the average loss in iterations that exceed the selected VaR level
 - This gives equal weight to all outcomes in the tail
- For RMK approach, RLF = 1 if cumulative probability is above the selected VaR, otherwise 0

Marginal Models for Capital Allocation

- Marginal models recognize diversification benefits within an organization when allocating capital
- Marginal methodologies (e.g. Myers-Read) rely on option pricing theory to derive the marginal impact of a line on capital
- Marginal models view the equity holders of the insurance company as investors who have a contingent claim (call option) on the firm's assets
 - As liabilities mature, equity holders have a claim on the residual (e.g., Assets - Liabilities)
 - If liabilities exceed assets, the equity holders lose their stake, but no more; this return profile is similar to a call option on the assets

Myers - Read

- Given the firm's assets and the present value of the losses by line, option pricing methods are used to calculate the firm's default value
 - Default value is the premium the company would have to pay to guarantee payment of the losses if the company defaults
- Surplus is then allocated to each line so that the marginal default value is the same in all lines.
- M-R evaluates incremental changes
- For RMK approach, RLF = 1 if cumulative probability is within ε of the ruin probability, otherwise 0

Choice of Method

- Reason for capital allocation should drive the choice of method
- Ease of application
- Ease of interpretation

Applying Capital Allocation to Performance Evaluation

- Dividing actual returns by allocated capital provides a risk adjusted rate of return
- Base performance evaluation on risk adjusted returns
- Compare this approach to having a different hurdle rate for each area

Case Study: Capital allocation for performance evaluation

- Five roles to play
 - VP-Homeowners
 - VP-Auto
 - VP-Investments
 - CRO
 - CEO
- Excel file with 10,000 iterations of economic capital model

- Capital allocation methods
 - TVaR
 - 95%
 - 99%
 - 99.9%
 - VaR
 - 95%
 - 99%
 - Semi-variance
 - Myers-Read
 - $\varepsilon = 1.0\%$
 - $\varepsilon = 0.5\%$
 - $\varepsilon = 0.1\%$

Case Study- Developed by Steve D'arcy (30 minutes)

- Form groups of 5
- Read Case Study
- Download Excel file RPM Case Study Data
- Perform capital allocation calculations
- For your role, select one of the capital allocation methods to use for performance evaluations
- Be prepared to justify your choice when the group reconvenes

Case Study Discussion

Which method did each role select?

- VP-Homeowners
- VP-Auto
- VP-Investments
- CRO
- CEO

Other Methods:

See RR-1 Presentation

Capital Allocation References

- D. Ruhm and D. Mango, 2003, "A Method of Implementing Myers-Read Capital Allocation in Simulation," Casualty Actuarial Society Forum, Fall, 451-458. http://www.casact.org/pubs/forum/03fforum/03ff451.pdf
- R. Kreps, 2005. "Riskiness Leverage Models," Proceedings of the Casualty Actuarial Society 91: 31-60. http://www.casact.org/pubs/proceed/proceed05/05041.pdf.
- D. Mango, 2006, "Insurance Capital as a Shared Asset," Casualty Actuarial Society Forum, Fall, 573-586. http://www.casact.org/pubs/forum/06fforum/577.pdf
- S. P. D'Arcy, 2011, "Capital Allocation in the Property-Liability Insurance Industry," *Variance*, 5(2):141-157. http://www.variancejournal.org/issues/05-02/141.pdf
- D. Ruhm, D. Mango and R. Kreps, "A General Additive Method for Portfolio Risk Analysis." Forthcoming, ASTIN Bulletin.