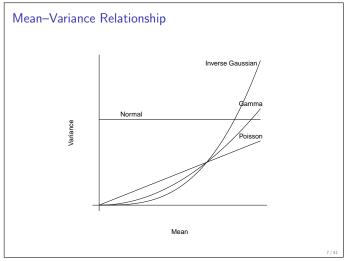
 Antitrust Notice The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings. Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition. It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy. 	GLM I: Introduction to Generalized Linear Models Ernesto Schirmacher Liberty Mutual Insurance Casualty Actuarial Society Ratemaking and Product Management Seminar March 9–11, 2015 Dallas, TX
Overview	Standard Linear Model Specification
Overview of GLMs	
Personal Injury Claims	$y = eta_0 + x_1eta_1 + \dots + x_keta_k + \epsilon \qquad ext{with } \epsilon \in N(0, \sigma^2)$
Intercept Only Models	
One Continuous Predictor	
One Discrete Predictor	
Many Predictors	
Key Concepts	
3/41	4/41
Standard Linear Model Specification	Generalized Linear Model Specification

 $y = \beta_0 + x_1\beta_1 + \dots + x_k\beta_k + \epsilon$ with $\epsilon \in N(0, \sigma^2)$

A better way to think about this would be

 $\mathbb{E}[y] = \beta_0 + x_1\beta_1 + \cdots + x_k\beta_k$

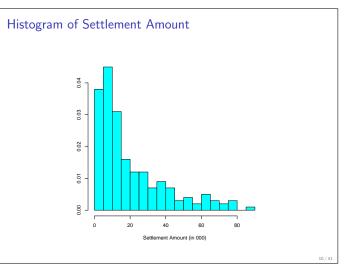
where $y \in N(\mu, \sigma^2)$ and $\mu = \beta_0 + x_1\beta_1 + \cdots + x_k\beta_k$ is the linear predictor.

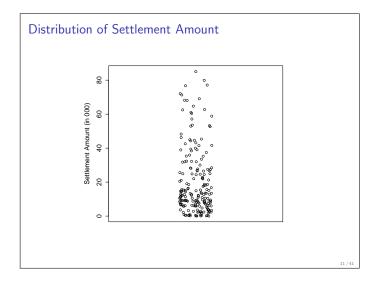

 $g(\mathbb{E}[y]) = \beta_0 + x_1\beta_1 + \dots + x_k\beta_k + \text{offset}$

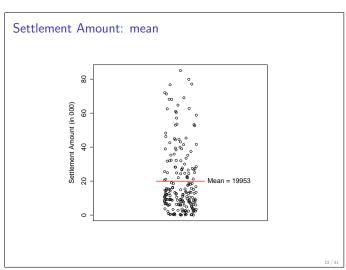
1. The link function is g

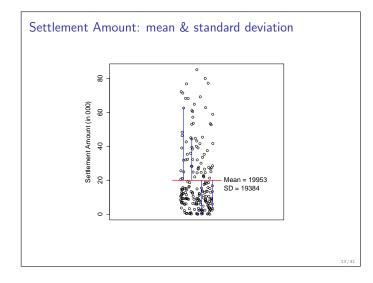
2. The distribution of y is a member of the exponential family

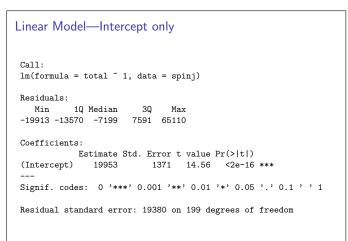
3. The explanatory variables x_i may be continuous or discrete

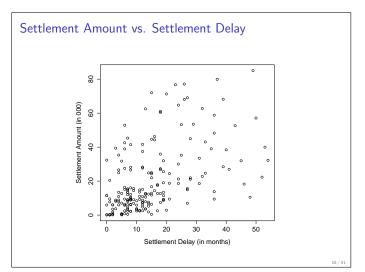

4. Offset terms have a known coefficient of 1 in the linear predictor

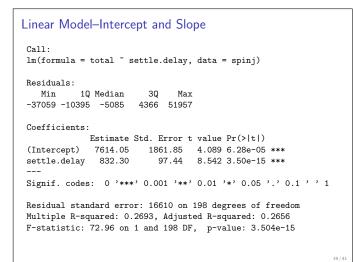


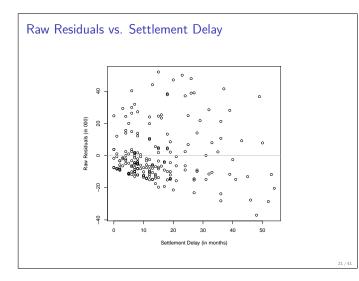

Variable Descriptions

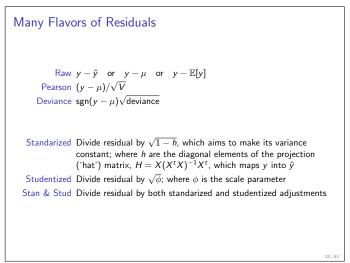

Variable	Type	Comments
Settled Amount	Cont	range: \$40 to \$85,000
Injury Codes	Cat	Injury level: $1, 2, \ldots, 6 = \text{death}, 9 = \text{missing}$
Legal Rep.	Bin	Attorney involved? $1 = $ Yes, $0 = $ No
Accident Month	Coded	1 = July 1989, 120 = June 1999
Report Month	Coded	same as accident month
Fin. Month	Coded	same as accident month
Injured Count	Count	Number of persons injured: 1, 2,, 5
Acc. Injury	Cat	Highest injury code among those injured
Report Delay	Cont	# months between accident and report
Settle. Delay	Cont	# months between report and settlement



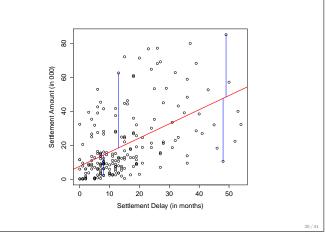

Generalized Linear Model—Normal Id—Intercept only Call: glm(formula = total ~ 1, family = gaussian(link = identity), data = spinj) Deviance Residuals: Min 10 Median 30 Max -19913 -13570 -7199 7591 65110 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 19953 1371 14.56 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for gaussian family taken to be 375744867) Null deviance: 7.4773e+10 on 199 degrees of freedom Residual deviance: 7.4773e+10 on 199 degrees of freedom AIC: 4519.5

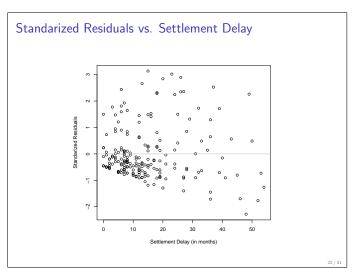

Number of Fisher Scoring iterations: 2


```
Generalized Linear Model—Gamma Log—Intercept only
Call: glm(formula = total ~ 1,
         family = Gamma(link = "log"), data = spinj)
Deviance Residuals:
   Min
             1Q Median
                              30
                                      Max
-3.2293 -0.9588 -0.4165 0.3407
                                  1.9043
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.9011 0.0687 144.1 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 0.9438079)
    Null deviance: 252.05 on 199 degrees of freedom
Residual deviance: 252.05 on 199 degrees of freedom
AIC: 4366.6
Number of Fisher Scoring iterations: 6
```


Generalized Linear Model—Gamma Id—Intercept only

Call: glm(formula = total ~ 1, family = Gamma(link = identity), data = spinj) Deviance Residuals: Min 10 Median 30 Max -3.2293 -0.9588 -0.4165 0.3407 1.9043 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 19953 1371 14.56 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for Gamma family taken to be 0.9438079) Null deviance: 252.05 on 199 degrees of freedom Residual deviance: 252.05 on 199 degrees of freedom AIC: 4366.6 Number of Fisher Scoring iterations: 3





Settlement Amount vs. Delay: Least Squares Line

Deviance

Normal	Contribution to Squared Deviance $(y_i - \mu_i)^2$
	0
Poisson	$2\{y_i \log(y_i/\mu_i) - y_i + \mu_i\}$
Gamma	$2\{-\log(y_i/\mu_i)+(y_i-\mu_i)/\mu_i\}$
Inverse Gaussian	$(y_i - \mu_i)^2/(\mu_i^2 y_i)$

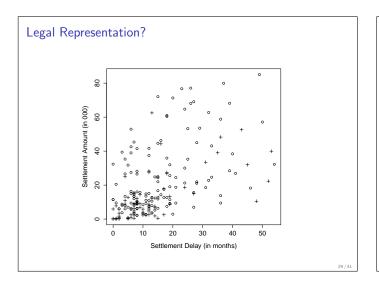
Gamma Log GLM–Intercept and Slope

Call: glm(formula = total ~ settle.delay, family = Gamma(link = "log"), data = spinj) Deviance Residuals: Min 1Q Median 3Q Max -3.0008 -0.8017 -0.3145 0.1991 1.8982 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.187173 0.102174 89.917 < 2e-16 *** settle.delay 0.040473 0.005347 7.569 1.39e-12 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

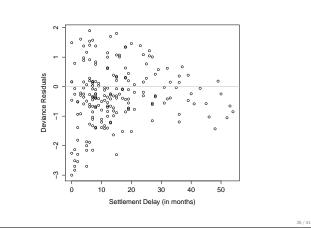
(Dispersion parameter for Gamma family taken to be 0.8310652)

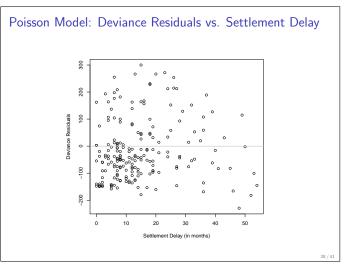
25 / 41

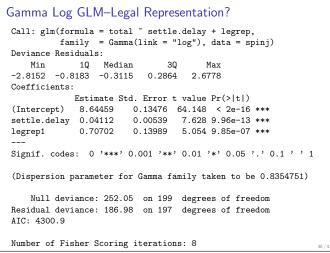
Null deviance: 252.05 on 199 degrees of freedom Residual deviance: 206.47 on 198 degrees of freedom AIC: 4321.8

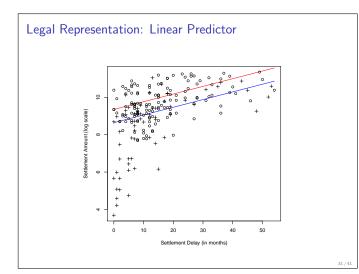

Number of Fisher Scoring iterations: 7

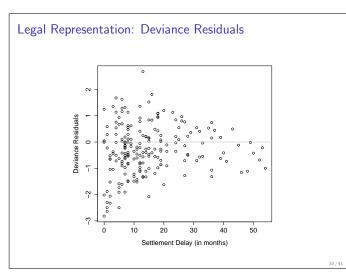
Poisson Log GLM–Intercept and Slope

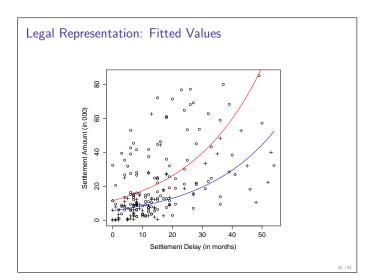

```
Call: glm(formula = tot.amt ~ settle.delay,
          family = poisson(link = "log"), data = spinj)
Deviance Residuals:
   Min
            1Q Median
                               ЗQ
                                       Max
-229.41
         -92.18
                  -42.51
                            35.74
                                   299.99
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 9.323e+00 8.583e-04 10862.1 <2e-16 ***
settle.delay 3.280e-02 3.338e-05 982.7
                                          <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 3366902 on 199 degrees of freedom
```

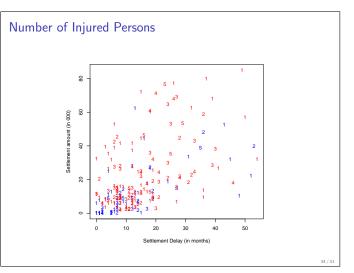

Residual deviance: 2515703 on 198 degrees of freedom AIC: 2517928

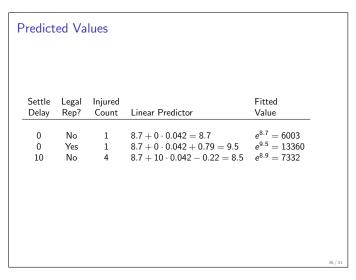

Number of Fisher Scoring iterations: 5

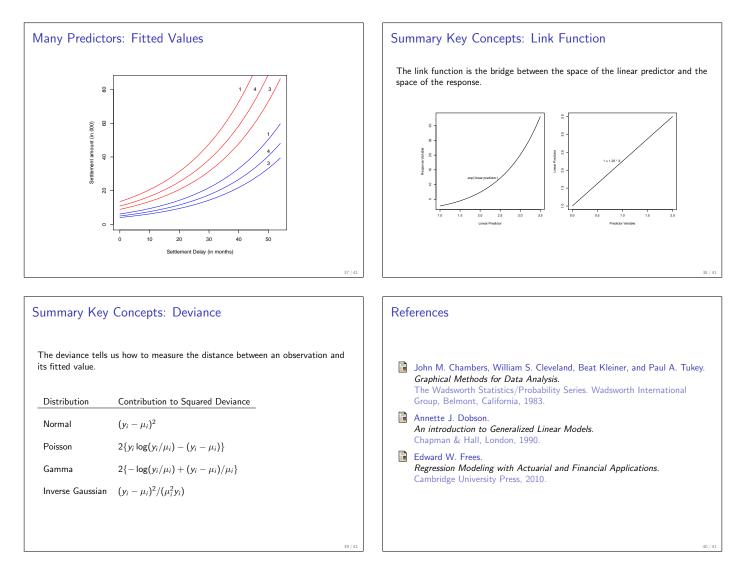



Gamma Model: Deviance Residuals vs. Settlement Delay









Gamma Log GLM–Many Predictors	
Call: glm(formula = total ~ settle.delay + legrep + inj.cou	nt,
<pre>family = Gamma(link = "log"), data = spinj)</pre>	
Coefficients:	
Estimate Std. Error t value Pr(> t)	
(Intercept) 8.722358 0.141721 61.546 < 2e-16 ***	
settle.delay 0.042138 0.005222 8.069 7.38e-14 ***	
legrep1 0.786161 0.139411 5.639 6.01e-08 ***	
inj.count2 -0.300230 0.160788 -1.867 0.0634 .	
inj.count3 -0.416338 0.177247 -2.349 0.0198 *	
inj.count4 -0.216891 0.244640 -0.887 0.3764	
inj.count5 0.005267 0.254395 0.021 0.9835	
Null deviance: 252.05 on 199 degrees of freedom	
Residual deviance: 181.44 on 193 degrees of freedom	
AIC: 4302	
Number of Fisher Scoring iterations: 9	
	35 /

