

Insurance Programs and Analytic Services

The Kaggle Challenge

Dmitriy Guller, ACAS Actuarial Associate Sr., Modeling Division, ISO

> Mark Goldburd, FCAS, MAAA Consulting Actuary, Milliman

Outline

- Description of the Competition
- Model Building
- Lessons Learned

What is Kaggle?

- World's largest community of data scientists (220,000+ members)
- Crowdsourcing of predictive modeling problems
 - \circ Many predictive modelers competing with each other may come up with a better model than domain experts
- Host of competitions to solve complex data science problems
 - o Cover many different fields
 - Few insurance-related challenges
 - $\,\circ\,$ For people new to data science, beginner challenges to get them started
- Competition sponsors post a problem and related datasets
- Players submit predictions and are ranked by some objective function
- Top finishers often get a prize

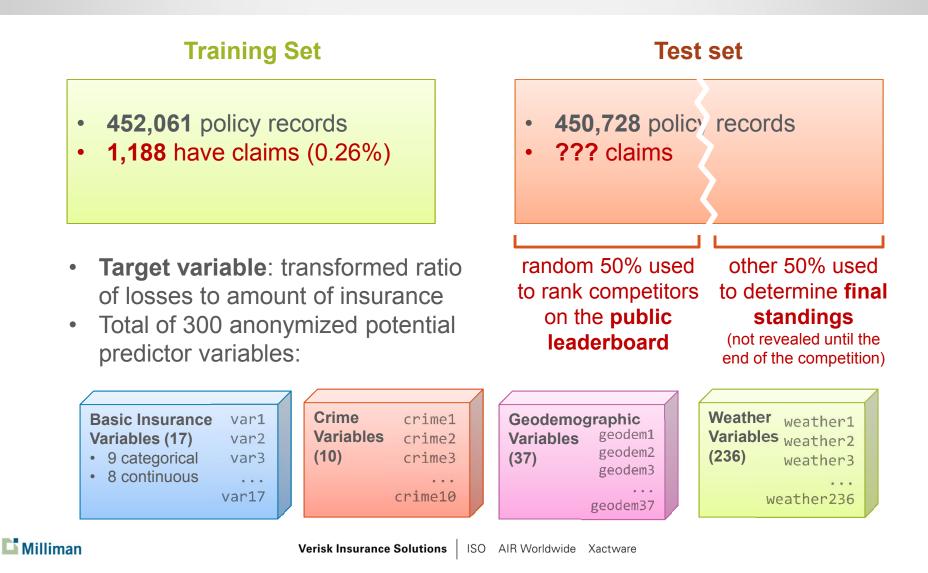
Liberty Mutual Competition

- Predict expected fire losses for insurance policies
 - Significant portion of total property losses
 - Low frequency and high severity
- Objective function: maximize weighted Gini on the test dataset
- Ultimately 634 teams participated
 - $_{\odot}$ Competition open to Liberty Mutual employees for training purposes

Model Building

Insurance Programs and Analytic Services

Description of Data



Generalized Linear Models

- Standard statistical method
 - $_{\odot}$ Commonly used in the industry for class plan analysis
- Many model runs
 - Find significant variables
 - ${\scriptstyle \circ}$ Transformations and bucketing
- Best GLM model:
 - \circ Pure premium, using Tweedie (p = 1.5) distribution
 - 14 variables, 22 degrees of freedom
 - $\,\circ\,$ Mostly basic insurance variables
- Public leaderboard Gini of 0.40023 44th place

Generalized Linear Mixed Models

- **Challenge**: 'Basic' insurance variables included categorical variables with many levels many of which had little credibility
- Solution: Use GLMM -- extension of GLM
- Introduces 'random effects' in addition to 'fixed effects'
 Fixed effects are fully credible variables
 - $_{\odot}$ Random effects are variables to which credibility is applied
- Integrated GLM and credibility framework
- Public leaderboard Gini of 0.41387 23rd place

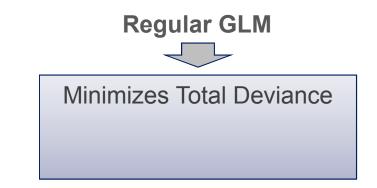
Ensembling

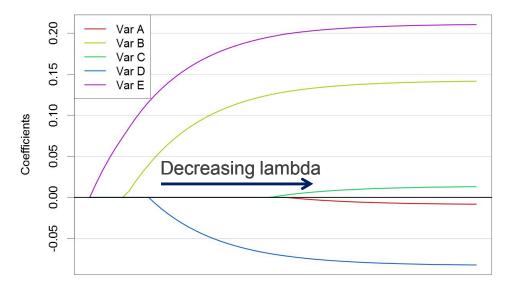
- Combining information from multiple models to come up with better estimates
- For most of the competition, we worked on our own models separately
 - Formed team with two weeks to go
- Different approaches taken
 - Frequency/severity modeling using GLMM best model had Gini of 0.40518
 - $_{\odot}$ Pure premium modeling using GLMM best model had Gini of 0.41387
- What if we just took predictions from both models and averaged them?
- Public leaderboard Gini of 0.41904 16th place

Elastic Net Elastic Net GLM **Regular GLM Minimizes Total Deviance Minimizes Total Deviance** subject to a penalty term for size of coefficient estimates **Example using OLS:** Penalty SSE $SSE_{EN} = \sum_{i}^{n} (y_{i} - \beta_{0} - x_{i1}\beta_{1} - \dots - x_{ip}\beta_{p})^{2} + \lambda \left(\alpha \sum_{j=1}^{p} |\beta_{j}| + (1 - \alpha) \sum_{j=1}^{p} |\beta_{j}|^{2}\right)$ Tuning parameter 'lambda' controls size of penalty

Milliman

Elastic Net



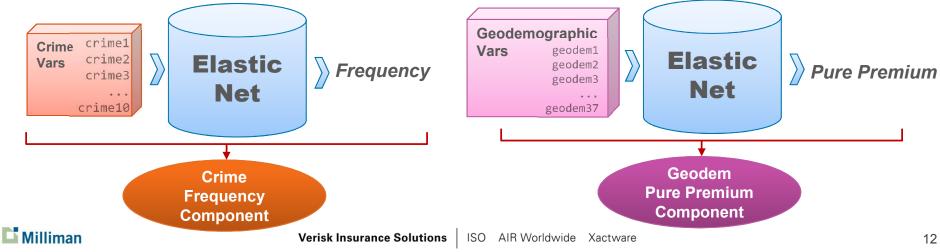


- Compared to GLM, elastic net has worse fit on training data and better fit on holdout data
- Just like GLMM, elastic net can be thought of as GLM with credibility

Milliman

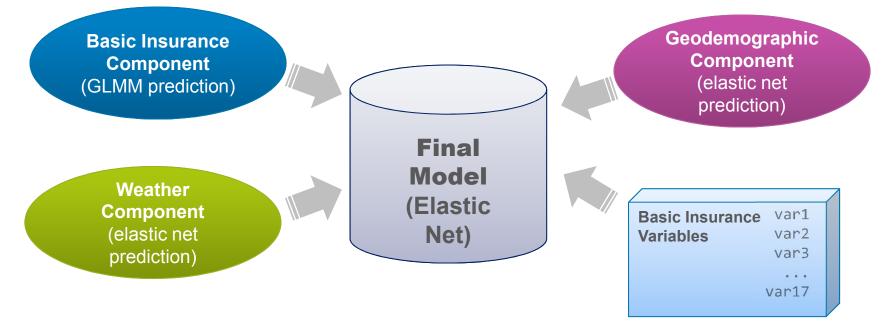
'Components' from elastic net

- **Challenge**: data included large number of crime, weather and geodemographic variables
 - o Little informational value
 - Many were highly correlated
- Solution: create 'components' using elastic net models
 - Crime, geodemographic, and weather variables were all used in isolation to predict the target variable
 - Elastic nets were used to create pure premium, frequency, and severity components
 - Combined a very large number of variables into several single variable components



Final Model

- All the components were combined with another elastic net
- Not a true multivariate approach
 - \circ There is risk of double-counting effects that were captured by components
 - \circ All basic insurance variables were put into the combined model again to compensate



Public Leaderboard

Completed • \$25,000 • 634 teams

Liberty Mutual Group - Fire Peril Loss Cost

Tue 8 Jul 2014 - Tue 2 Sep 2014 (2 months ago)

Dashboard

Public Leaderboard - Liberty Mutual Group - Fire Peril Loss Cost

This leaderboard is calculated on approximately 50% of the test data. The final results will be based on the other 50%, so the final standings may be different. See someone using multiple accounts? Let us know.

#	∆1w	Team Name *in the money	Score 🔞	Entries	Last Submission UTC (Best - Last Submission)
1		Mark & Dmitriy 🎩 *	0.44776	160	Tue, 02 Sep 2014 00:16:08
2	<u>†</u> 5	DataRobot 🍂 *	0.43285	154	Tue, 02 Sep 2014 17:18:29 (-3.1h)
3		Xinxin *	0.43131	152	Tue, 02 Sep 2014 14:19:23
4		Team Larry 🕫	0.43093	201	Sat, 30 Aug 2014 11:28:15 (-3.4d)
5	<u>†</u> 1	REX@CatchingFire 1	0.43012	174	Tue, 02 Sep 2014 23:55:27 (-3h)
6	ţ 4	Gauss, Anshul, and Gaurav 🎩	0.42995	149	Tue, 02 Sep 2014 18:04:02 (-3.4d)
7	↓2	Patrick Chan	0.42959	219	Tue, 02 Sep 2014 20:34:57 (-1.7h)
8	ţ3	LM_Prometheus&Arcadian&CrazyHorse 🏨	0.42725	198	Tue, 02 Sep 2014 18:28:15 (-17.3h)
9		LM_Statistically_Speaking 💵	0.42470	174	Tue, 02 Sep 2014 18:14:07 (-40.1h)
10	‡2	lvanhoe	0.42434	206	Tue, 02 Sep 2014 23:28:55 (-2.8d)
11	↑ 27	gmilosev	0.42314	123	Tue, 02 Sep 2014 21:27:44 (-6.2h)
12	ţZ	Leustagos and Titericz 🏨	0.42236	2 <mark>1</mark> 0	Tue, 02 Sep 2014 22:18:15 (-21d)

L Milliman

See someone using multiple accounts?

Private Leaderboard

Completed • \$25,000 • 634 teams

Tue 8 Jul 2014 - Tue 2 Sep 2014 (2 months ago)

Dashboard

Private Leaderboard - Liberty Mutual Group - Fire Peril Loss Cost

Liberty Mutual Group - Fire Peril Loss Cost

This competition has completed. This leaderboard reflects the final standings.

W

					Let us know.
#	∆1w	Team Name *in the money	Score 🚱	Entries	Last Submission UTC (Best - Last Submission)
1	<u>†1</u>	DataRobot 🏨 *	0.33245	154	Tue, 02 Sep 2014 17:18:29 (-2.1d)
2	11	Ivanhoe *	0.32652	206	Tue, 02 Sep 2014 23:28:55 (-2.8d)
3	<mark>↑51</mark>	barisumog *	0.32626	40	Tue, 02 Sep 2014 08:19:53
4	-	datalab.se	0.32006	58	Sat, 02 Aug 2014 06:34:17 (-21h)
5	1334	paulperry	0.32002	18	Tue, 02 Sep 2014 21:06:38 (-0.3h)
6	11	Mark & Dmitriy 💶	0.31673	160	Tue, 02 Sep 2014 00:16:08
7	<mark>↑16</mark>	tryhard	0.31597	54	Tue, 02 Sep 2014 23:53:05 (-39h)
8	ţ2	Leustagos and Titericz 🍂	0.31462	210	Tue, 02 Sep 2014 22:18:15 (-17.2d)
9	↑5	Gauss, Anshul, and Gaurav 🎩	0.31423	149	Tue, 02 Sep 2014 18:04:02 (-3.4d)
10	↑587	n_m	0.31396	8	Tue, 02 Sep 2014 16:20:34 (-1.1h)
11	14	backdoor	0.31149	47	Tue, 02 Sep 2014 09:29:15 (-20.9d)
12	14	Michael 2	0.31112	31	Tue, 02 Sep 2014 20:33:19 (-9.2d)

Public vs Private Leaderboard

Public Rank	Private Rank	Top 250 Teams Owen's team	
1	6	0.32	
2	1		•
3	13		•
4	34	D.28	
5	18	eader	
6	9	0.24 0.24	
7	210	Pri	
8	82		
9	48		
10	2	0.34 0.36 0.38 0.40 0.42 0.44	

Public leaderboard score

Milliman

Lessons Learned

Insurance Programs and Analytic Services

Proper Cross-Validation is Crucial

- Used to measure predictive performance of model
- Often we don't have enough data to split into training and test sets

		Da	ita:																							
Procedure:		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	Randomly split into groups:	18	15	9	17	6	23	20	25	21	13	12	24	16	2	4	5	14	10	11	8	3	22	7	1	19
	groups.		train on																							
						Г																				1
2		18	15	9	17	6	23	20	25	21	13	12	24	16	2	4	5	14	10	11	8	3	22	7	1	19
	l																									
			t	est	on																					
3	Repeat for remaining groups:	18	15	9	17	6	23	20	25	21	13	12	24	16	2	4	5	14	10	11	8	3	22	7	1	19
		18	15	9	17	6	23	20	25	21	13	12	24	16	2	4	5	14	10	11	8	3	22	7	1	19
		18	15	9	17	6	23	20	25	21	13	12	24	16	2	4	5	14	10	11	8	3	22	7	1	19
		18	15	9	17	6	23	20	25	21	13	12	24	16	2	4	5	14	10	11	8	3	22	7	1	19

L Milliman

Proper Cross-Validation is Crucial

- Plan out before model building
- Encompass all model building steps
- Preferable to train/test split
 - $\,\circ\,$ May do both split first, then cross-validate inside the training dataset
- Lack of cross-validation can leave you flying blind
- Helps prevent "overfitting to public leaderboard" phenomenon

GLM: Simplistic But Not Simple

- One of the less powerful statistical learning methods
- Linear model
 - $_{\odot}$ Most phenomena are non-linear
 - $\circ\,$ Interactions and transformations are an imperfect solution
- Requires a lot of manual fine-tuning
 - $_{\odot}$ Makes proper cross-validation very difficult

Elastic Net

- Elastic net can do GLM better
 - $\circ\,$ GLM is a special case of elastic net
- Many non-obvious improvements over GLM
 - $\,\circ\,$ Shrinks coefficients towards grand mean, just like credibility procedure
 - \circ When α is zero (ridge regression), there is direct connection to Buhlmann-Straub credibility method
 - \circ When α > 0, variable selection is automatically performed

Try Many Approaches

• At the onset of a modeling project, it is difficult to know which approach or method will be optimal

- Some things that didn't work for us:
 - Principal Component Analysis
 - MARS Models
 - Tree-based learning methods (e.g., Random Forest)

Sometimes It's Not Either/Or

- When the choice is between using one method or the other, the optimal answer may be using one method on top of another
- Fitting a model to the residuals of the other model is called boosting
 The second model can fill in where the first model systematically misses
- **Ensembling** is another way to combine multiple models
 - Instead of fitting one model on top of another, different model predictions are averaged in some way
- Our top model was always a straight average of pure premium and frequency/severity model

Competitions are Educational

Competition Platforms:

kaggle TUNEDIT CrowdANALYTIX

INNOCENTIVE*

- Clearly defined goals
- Competitive drive to come up with a better idea
- Instant feedback
- Learn from the best
- Bring back fresh ideas to work

C Milliman

Very Helpful Books

References

- GLM
 - o Anderson, D. et. al. (2007) A Practitioner's Guide to Generalized Linear Models.
 - Frees, Edward W. et. al. (2014) Predictive Modeling Applications in Actuarial Science.
- GLMM
 - Klinker, F. (2010) "Generalized Linear Mixed Models for Ratemaking: A Means of Introducing Credibility into a Generalized Linear Model Setting," <u>https://www.casact.org/pubs/forum/11wforumpt2/Klinker.pdf</u>.
- R and R Studio
 - o <u>http://cran.r-project.org/</u>
 - o <u>http://www.rstudio.com/</u>