DataRobot

Winning the Liberty Mutual Kaggle Competition

Disclaimer:

- We do NOT state or imply Liberty Mutual endorses me, our team, our submission, Data Robot, Inc. or other companies I am involved with, or any of its or their products
- We thank Liberty Mutual for hosting the competition and identifying us as the winner of this competition.

1. Team

- 2. Competition Summary
- 3. Challenges
- 4. Our Approach
- 5. Key Takeaways

Superpowers as a Service for Data Scientists

DATAROBOT TEAM

Xavier Conort

Chief Data Scientist

Kaggle Rank: #1 2012-2013

Experience: Principal Research Engineer, I2R Actuary, Risk Manager and CFO at CNP Assurances and AXA

Owen Zhang

Chief Product Officer

DataRobot

Data Science Master

Kaggle Rank: #1 2013-present

Experience: VP, Science, AIG Sr. Director, Analytics at Travelers Insurance Kaggle Rank: Master (top 1%)

Experience:

10+ million predictive models and counting ...

info@DataRobot.com | @DataRobot | DataRobot, INC., CONFIDENTIAL

1. Team

- 2. Competition Summary
- 3. Challenges
- 4. Our Approach
- 5. Key Takeaways

COMPETITION SUMMARY

Fire Peril Loss Cost:

- Organized by Liberty Mutual
- Business problem: Predict expected fire
 losses for insurance policies
 - Significant portion of property losses
 - Volatile and hard to model correctly
- Started July 8, 2014
- Finished Sept 2, 2014

Completed • \$25,000 • 634 teams

Liberty Mutual Group - Fire Peril Loss Cost

Tue 8 Jul 2014 - Tue 2 Sep 2014 (12 days ago)

Team DataRobot finished 1st out of 634 teams competing globally!

DATA OVERVIEW

- ~1 million insurance records
- 300 variables:

target : The transformed ratio of loss to total insured value

id : A unique identifier of the data set

dummy : Nuisance variable used to control the model, but not a predictor

var1 - var17 : A set of normalized variables representing policy characteristics

crimeVar1 – crimeVar9 : Normalized Crime Rate variables geodemVar1 – geodemVar37 : Normalized geodemographic variables weatherVar1 - weatherVar236 : Normalized weather station variables

Numeric Variable Name		Va	riable Typ	e			
target		Со	ntinuous				
id		Dis	crete				
var10		Со	Continuous				
var11		Coi	ntinuous				
var12		Coi	ntinuous				
var13		Coi	ntinuous				
var14		Coi	ntinuous				
var15		Со	Continuous				
var16		Coi	ntinuous				
var17		Со	ntinuous				
crimeVar1 – crimeVar9		Со	Continuous				
geoDemVar1 – geoDemVar37		Со	ntinuous				
weatherVar1 – w	Categorical eath	Categorical		Possib	e Values		
	var1	var1		1, 2, 3, 4, 5, Z*			
var2			Nominal	A. B. C. Z*			
	var3	var3		1.2.3.	1, 2, 3, 4, 5, 6, Z*		
var4*			Nominal	A1. B1.	C1, D1, D2, D3, D4, E1,		
				E2, E3, E4, E5, E6, F1, G1, G2, H1 H2, H3, I1, J1, J2, J3, J4, J5, J6, K1,			
				L1, M1, N1, O1, O2, P1, R1, R2,			
				R3, R4,	4, R5, R6, R7, R8, S1, Z*		
	var5	var5		A, B, C, D, E, F, Z*			
	var6	var6		A, B, C, Z*			
	var7	var7		1, 2, 3, 4, 5, 6, 7, 8, Z*			
	var8	var8		1, 2, 3, 4, 5, 6, Z*			
	var9	var9		A, B, Z*			
	dummy	dummy		ominal A, B			

- 1. Team
- 2. Competition Summary
- 3. Challenges
- 4. Our Approach
- 5. Key Takeaways

Superpowers as a Service for Data Scientists

CHALLENGES

- 1. Team
- 2. Competition Summary
- 3. Challenges
- 4. Our Approach
- 5. Key Takeaways

OUR APPROACH

CENSORING LARGE CLAIMS

Technique

• To censor large claims, we capped the target at the 80% quantile of non-zero losses

Impact

 More accurate and robust results than modeling with the raw target or its log transformation

DOWNSAMPLING MAJORITY EVENTS

 Kept all non-0 records but only small % of 0 records from the training dataset

Impact

 Sped up model training significantly, and improved accuracy of certain ML algorithms (RandomForest, ExtraTrees, etc.)

REDUCING NOISE

- Ran 2 automated feature selections to detect large presence of noise
- Produced our own feature list with significantly low noise

FEATURE ENGINEERING

- Broke feature set into 4 components
- Created surrogate ID based on identical crime, geodemographics and weather variables

Policy Characteristics	Geodemographics		
<u>30 features</u> :	<u>1 feature:</u>		
 All policy characteristics features (17) Split V4 into 2 levels (8) Computed ratio of certain features Combined surrogate ID and subsets of policy vars 	- Derived from PCA trained on scaled vars	ļ	32 features
Weather	Crime Rate		
<u>1 feature:</u>	<u>0 features</u>		
- Derived from elasticnet trained on scaled variables			

MODELING WITH DATAROBOT

- Uploaded downsampled dataset with 32 features and capped target
- Ran multiple models in parallel with Normalized Gini metric to rank them
- Selected 3 promising models based on their 5-CV scores and trained them on 100% data
 - ExtraTrees Regressor
 - RandomForest Regressor
 - Ordinary Least Squares Regressor

FINAL SOLUTION SUMMARY

- 1. Team
- 2. Competition Summary
- 3. The Challenge
- 4. Our Approach
- 5. Key Takeaways

KEY TAKEAWAYS

- 1. Classic insurance problem set keys to addressing this problem were:
 - \circ Capping
 - Downsampling
 - Feature selection to reduce noise
 - Extracting value from blocks of features
- 2. Capabilities of DataRobot
 - Rapidly explore diverse combinations of feature transformations and ML algorithms
 - Build highly accurate models from this search space automatically