

Serhat Guven, FCAS, MAAA

March, 2015

Overview

- Background
- Predictive Analytics and Modeling
- Competitive Analytics and Simulation
- Summary

Background

 Statistical data modeling is involves a trade off between predictive and explanatory powers

- Dilemma of over-fitting vs. danger of anti-selection
 - 100 + factors
 - Geographic spatial analysis
 - Many interactions
 - Multi-dimensional effects via scores

Background

• Policies written are more skewed to competitive segments

• Unintended competitiveness through under pricing degrades profitability

Background

- What techniques are used to minimize the risk of overfitting?
- How is competitive pricing used to enter into new markets?

• Goal of a good model is to find the pattern and ignore the noise

• Goal of a good model is to find the pattern and ignore the noise

towerswatson.com

Variety of tests are applied in modeling in practice
Models are rarely built blindly

1

Consistency tests

Wald p-values

4

6

10

8

Chi-squared & F-tests

Akaike information criteria

12

14

16

 Consistency example to the extreme: adding random factors that may appear more than 2 SD away from the null model

- Robot model maker might accept these parameters as significant
- Deviance measure decreases as more parameters added can mislead

• Simple dataset with one factor:

• Upward sloping trendline could be used as a factor

 Model could slavishly follow the data (green line) as the deviance is reduced:

• However the model will not perform better on the hold out

• Current practice uses the data to solve for the parameters

• This is then tested against a hold out sample

- Issues:
 - What is a good fit
 - What do adjust when there is a poor fit

• Hold out sample could be used to adjust parameters

• This creates a circular reference

• The trick is to optimize parameters against the hold out without using it

"Case Deleted Deviance"

- Tony Lovick & Peter Lee
- Sessional Meeting of the Institute and Faculty of Actuaries 28 March 2011
- www.actuaries.org.uk

REDEFINING THE DEVIANCE OBJECTIVE FOR GENERALISED LINEAR MODELS

BY A.C. LOVICK AND P.K.W. LEE

[Presented to the Institute and Faculty of Actuaries: London: 28 March 2011; Norwich: 6 June 2011]

ABSTRACT

This paper defines the 'Case Deleted' Deviance - a new objective function for evaluating Generalised Linear Models, and applies this to a number of practical examples in the pricing of general insurance. The paper details practical approximations to enable the efficient calculation of the objective, and derives modifications to the standard Generalised Linear Modelling algorithm to allow the derivation of scaled parameters from this measure to reduce potential over fitting to historical data. These scaled parameters improve the predictiveness of the model when applied to previously unseen data points, the most likely being related to future business written. The potential for over fitting has increased due to number of factors now used, particularly in pricing personal lines business and the advent of price comparison sites which has increased the penalties of mis-estimation. New material in this paper has been included in a UK patent application No. 1020091.3.

KEYWORDS

Generalised Linear Modelling; General Insurance Pricing; Parameter Uncertainty; Case Deletion; Deviance; Non-Linear Modelling; Demand Modelling; Price Comparison Site Pricing; Winner's Curse.

CONTACT ADDRESSES

Tony Lovick, Towers Watson, Saddlers Court, 64 - 74 East Street, Epsom, Surrey, KT17 1HB.

Tel: +44 (0)1372 751060; E-Mail: Tony.Lovick@TowersWatson.com

Peter Lee, Towers Watson, Saddlers Court, 64 - 74 East Street, Epsom, Surrey, KT17 IHB. Tel: +44 (0)1372 751060; E-Mail: <u>Peter.Lee@TowersWatson.com</u>

1

Concepts behind the Case Deleted Deviance

- Current practice is to parameterize a model with all data points and compare the fitted values (μ_i) with the observation (y_i)
 - Standard Deviance = SD (y_i, μ_i)
- A better approach is to physically refit the model with n-1 datapoints by excluding y_i to yield a new fitted value (μ_(i))
 - Case Deleted Deviance = CDD (y_i, μ_(i))
 - Case Deleted Deviance is independent of the point it relates to

Pie I	 Find the "best" scalars in the "Case Deleted Deviance" sense 		Value	Standard Error	Standard Error (%)	Alias Indicator (%)	Weight	Weight (%)	Exp(Value)
			-2.743	0.031	1.1		236,207	100.0	0.064
		=	-0.060	0.020	34.1		100,320	42.5	0.942
•	Higher Variance parameters						135,888	57.5	
get scaled back most		scaled back most					200,845	85.0	
			0.114	0.027	23.6		35,362	15.0	1.120
•	Tak	ke account of parameter = relations =	0.117	0.010	8.9		236,207	100.0	1.124
	corr		-0.265	0.016	6.0		219,928	93.1	0.768
	0	· · · · · ·	-0.076	0.017	22.5		219,928	93.1	0.926
1	6	PA Curve 1spline 1(OPoly(1))	0.212	0.039	18.5		8,194	3.5	1.236
1	7	PA Curve 1spline 3 (OPoly(1))	0.041	0.009	23.1		229,373	97.1	1.042
18		PA Curve 1spline 4 (OPoly(1))	-0.064	0.009	13.9		229,373	97.1	0.938
19		YADA Curve 1(OPoly(1))	-0.176	0.014	8.2		236,207	100.0	0.838
2	20	YADA Curve 1(OPoly(2))	0.062	0.012	19.0		236,207	100.0	1.064
2	21	VG Curve 1spline 1(OPoly(1))	-0.242	0.119	49.4		203,278	86.1	0.785
2	2	VG Curve 1spline 2 (OPoly(1))	-0.116	0.070	60.0		235,863	99.9	0.890
2	3	VG Curve 1 spline 3 (OPoly(1))	-0.050	0.055	109.6		235,863	99.9	0.951
2	.4	VG Curve 1spline 4 (OPoly(1))	-0.177	0.092	52.3		235,863	99.9	0.838

towerswatson.com

towerswatson.com

Binomial Logit Example

towerswatson.com

GLM Alternatives

- Noise Reduction can be applied to
 - Neural Networks
 - Genetic Algorithms
 - Decision Trees, etc

28

Competitive Analytics and Simulation

- Motivation: how to develop a rate product for a new market segment
 - Geographic expansion
 - New affinities,
 - Alternate products, etc

Competitive Pricing Analysis for New Products

Rating Plan Development

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
Plan project and launch	Collect 	Develop insurance scoring or tier assignment	Create → input – database	Generate → competitor premiums	Select Price and Develop Rate
 Select state Select competitors and writing companies Identify exposure data needed to generate competitor premiums 	 Gather rating manuals and related filings for target competitors, including competitor or external information for: Credit-based insurance scoring algorithms Rating variables not used by the client Determine baseline coverage/product for comparison across carriers 	 Program each competitor's credit-based insurance scoring algorithms Validate results with competitor filing information (as available) Prepare comparative rating software to use the modeled credit-based insurance score instead of the default alignment option 	 Create a database of in-force policies Populate variables that competitors use for which the client does not collect data Generate credit-based insurance score for each competitor by policy based on results from Step 3 	 of Use batch-rating software to generate premiums Generate new and renewal premiums for each risk in the input database Validate generated premiums against the filed competitor rule/rate manuals and other external publications (as available) 	 Identify target price based on market segment analysis Reverse engineer rate algorithm Prospectively asses performance

Collect Competitive Information

Identify Competitors

- Competitor profiling vary from state to state
 - Identify how different competitors are approaching different market segments
 - Assess which competitors are profitable; which are growing; and which are growing profitably
- The goal is to identify key competitors for the target markets you wish to attract

Competitive Intelligence

Data Source(s)

- Competitor manuals and filings
- Comparative rating tool or spreadsheet software
- In-force book of business (biased sample)
- Business quoted but not written (optional; data may not be available or data may be incomplete)

Advantages

- Provides "on-the-street" premiums at a policy level for competitive analysis
- Provides a complete picture of the effectiveness of the current pricing structure, down to each individual rating segment
- Provides additional direction for internal pricing analysis
- Can be used to develop a new company rating plan
- Provides foundation for optimization

Disadvantages

- Time-intensive to generate competitor premiums if not already using a comparative rater
- Competitor information may not be readily available (especially tier/credit score)
- Easy to misinterpret information in collection/compilation of rating plan filings
 - Manual exchange programs typically not up to date
 - For groups with multiple writing companies, the full spectrum of tiers and rates may not be used in practice

Create Input Database

Field Types

- Build the new market basket using a combination of actual data with simulation
- Assess relevant fields and identify actions:

Policy Fields	Location Fields	Building Fields	Coverage Fields	
Policy identifier	Address	Year Built	Wind coverage	
• Form	Latitude/Longitude	Square footage	Sinkhole coverage	
Primary residence	Distance to Coast	Coverage A	Deductibles	
	Protection Class	Construction	Replacement cost	
	• BCEG	Wind mitigation features	on contents	

Supplement Data with Other Sources

• The goal is to use as much 'real' data as possible

Geodemographic Extrapolation to New States

Using census data to map distributions of existing data into new geographic units

towerswatson.com

Simulate Missing Data

- Simple simulation
 - Need to specify the desired distribution of policies across the factor AND the correlation between that factor and other factors
- Location based simulation
 - Ties the simulation to specific segments within the book
- Stratified
 - Ties the correlation to scores (e.g. premiums)

Generate Competitor Premiums

Batch rate the Market Basket

Quantitative analysis starts with a comparison of algorithms on the market basket

Average Premium All Coverages Combined

towerswatson.com

Batch rates are validated across segments

towerswatson.com

Alternate Metrics add Further Insight

Comparison by rating factor/segment

- Driver-related variables
 - Driver age
 - Gender
 - Marital status
 - Education level
 - Employment status
 - Military status
 - Occupation
 - Driving record
 - Months licensed
 - Accident prevention discount
 - Advanced training discount
 - Good student discount
- Prior insurance
 - Length of time with prior carrier
 - Prior limits
 - Type of insurer
 - Lapse in coverage

Auto Variables

- Household-related variables
 - Years at residence
 - Location
 - Policy tenure
 - Insurance score
 - Tier/insurance score for client and each competitor
 - Advanced shopper
 - Paid-in-full
 - EFT
 - Paperless documents
 - Multiple line discounts
 - Length of vehicle ownership
 - Household composition
 - Homeownership
 - Residence type
- Geography
 - Territory
 - Zip code

- Vehicle-related variables
 - Model year
 - Vehicle make
 - Cylinders
 - Performance
 - Symbol
 - Liability and medical symbol
 - Comprehensive and collision symbol
 - Annual mileage
 - Vehicle use
 - Miles driven to work
 - Location
 - Airbags
 - Disabling device
 - Anti-lock brakes
- Coverage-related variables
 - Limits (BI, PD, medical payment)
 - Deductibles (comprehensive, collision)

Comparison by rating factor/segment

- Home-related variables
 - Construction type
 - Built with fire-resistive material
 - Year built
 - Presence of a basement
 - Presence of a burglar alarm
 - Presence of a sensaphone
 - Presence of a fire alarm
 - Presence of a sprinkler system
 - Presence of a pool
 - Distance to fire station
 - Distance to fire hydrant
 - Floor area
 - Type of garage
 - Home renovations
 - Age of heating and cooling systems
 - Age of plumbing
 - Age of wiring
 - Age of roof
 - Type of roof
 - Prior losses/claims

Homeowners Variables

- Home-related variables (cont'd)
 - Number of family units
 - Number of bathrooms
 - Number of levels
 - Protection class
 - Town house
- Prior insurance
 - Length of time with prior carrier
- Geography
 - Territory
 - Zip code
- Coverage-related variables
 - Coverage A dwelling amount of insurance
 - Coverage C contents coverage
 - Coverage E liability
 - Deductible

- Resident-related variables
 - Owner age
 - Marital status
 - Retired
 - Months owned
 - Presence of a mortgage
 - Number of occupants
 - Number of smokers
 - Policy tenure
 - Tier/insurance score for client and each competitor
 - Multiple line discount
 - Auto
 - Life
 - Umbrella
 - Attendance at a safety seminar

Select Price & Develop Rate

Price Selection

- Prices can be selected using a wide array of approaches from extremely simple to very sophisticated:
 - Follow Progressive
 - Cheapest of n competitors
 - Market average
 - Clustering on relative position and intensity
- Analysis usually done on a policy basis
 - Cost models are used to allocate policy decisions to individual risks

Target price is based on individual competitors for clusters of risks

	15%			56%
•	More vehicles than drivers, ages 40 – 65, in tiers 10+		 Drivers more v 	aged <30 or above 65, ehicles than drivers
		vs. Co	ompetit	tor B
	30%			40%
•	Drivers below age 20, one driver on the policy			 Drivers below 23, with three or more drivers on the policy
Percen price is	t of risks in State \$50 or more be	e X where low comp	etitor	Percent of risks in \$50 or more above

vs. Competitor A

Note: Text bullets show representative types of risks.

towerswatson.com

Competitive segmented in a cluster analysis

Final price is selected from cluster groups

The clusters suggest potential pricing strategies

Reverse Engineer the Price into a Rate Algorithm

Reverse Engineer the Price into a Rate Algorithm

Individual Prices

Reverse Engineer the Price into a Rate Algorithm

Individual Prices

Prospective Assessment

Average Competitor & Proposed Vehicle Premium by Credit Score

Policy Average Competitor & Proposed Premium Views

towerswatson.com

Proposed Loss Ratio Analysis

 Compare the new price to the existing cost model and identify potential profitability issues

Monitoring

State Overview – Conversion

STATE	6 MONTH GROWTH RATE
State 1	-2.771%
State 2	-9.936%
State 3	5.519%
State 4	-10.665%
State 5	-2.597%
State 6	3.583%
State 7	-3.802%

Commentary:

- State 2 and 4 appear to be overpriced.
- State 3 could be underpriced

towerswatson.com

Change in Conversion is studied within geographic areas

- Red areas show improvement in conversion
- Green areas show weakening in conversion rates

Sophistication is an Integral Part of Market Growth

Growing the book	The challenge in analytics is that my cost models represent the experience I have rather than the experience I want. It is imperative to apply alternate approaches to both predictive analytics and competitive analysis to change the market footprint
Predictive Analytics	Loss costs models are enhanced to minimize the effect of overfitting. Thus final algorithms are more responsive to the signal in the data rather than noise. By properly reflecting the signal you can be more confident in the extrapolation beyond the existing data set
	Collect competitive data is a time consuming process that is rife with the potential for
Competitive Analytics	error. However, once built this can provide valuable insight on how to price to alternate markets. We built upon the idea of the market basket to reflect the universe of shoppers we wish to attract. We then selected a price and built a rate algorithm based on the brand we want.

