

AIG

CAS Ratemaking and Product Seminar Basic Ratemaking Estimating Claim Liabilities

March 9, 2015

Alejandro Ortega, FCAS, CFA Chief Actuary – AIG, Latin America

Goal of Estimating Claim Liabilities

- Estimate the Claim Liabilities for setting Loss Reserves
- Claim Liabilities the amount we need to pay for claims that have **Occurred** up to the valuation date
- Reserves the amount on the balance sheet
- Standard Tool is the Loss Triangle

Basics

Segmentation of Lines of Business	 Important to Segment Lines into Homogenous Groups Keep them Large enough to be statistically Credible
Segmentation of Indemnity and Expense	 Losses can be Split into Indemnity (to client or 3rd party) and Expense (for handling specific claims) Reviewed Together
Paid vs. Incurred	 Paid Loss Analysis Incurred Loss (Paid + Outstanding)
Accident Year Report Year Policy Year	 AY is useful for setting reserves RY is useful for setting reserves for Claims-Made Policies PY is useful for examining impact of U/W and Rate Changes

Development Factor Method

- Assume Payment Pattern (or Reporting) of Losses is the same for each Accident Year
- Losses Paid in each Accident Year are Independent of other Years

AIG

Development Factor Method

- Assume Payment Pattern (or Reporting) of Losses is the same for each Accident Year
- Losses Paid in each Accident Year are Independent of other Years

AY \ Age	12	24	36	48
2011	30%	75%	90%	100%
2012	30%	75%	90%	
2013	30%	75%		
2014	30%			

Development Factor Method

- Assume Payment Pattern (or Reporting) of Losses is the same for each Accident Year
- Losses Paid in each Accident Year are Independent of other Years

AY \ Age	12	24	36	48
2011	30%	75%	90%	100%
2012	30%	75%	90%	
2013	30%	75%		
2014	30%			
Cumulative LDF	3.333	1.333	1.111	1.000

$\frac{1}{LDE} =$	%	Paid	to	Date
LDF				

	12-24	24-36	36-48	
Incremental LDF	2.500	1.200	1.111	

Sample Triangle

Incremental Paid Losses

AY \ Age	12	24	36	48
2010	643	343	134	26
2011	689	405	180	37
2012	594	602	40	
2013	703	294		
2014	802			

- 703 is the amount Paid for Claims Occurring in 2013, and Paid in that year
- 294 is the amount Paid for Claims Occurring in 2013, and Paid in the following year

Time Increments	 In the US – Year by Year is Common Fast Paying Lines, Quarter by Quarter is useful You can also do Accident Year by Development Quarter
Claim Counts	 Useful to Review Claim Count Statistics Frequency, Report Rate, Closure Rate
Closure Rates	 Higher Paid Claims may be due to higher Closure Rate

Cumulative Paid Losses

AY \ Age	3	6	9	12	15	Earned Premium
2014 Q1	63	164	210	210	210	400
2014 Q2	68	171	216	216		420
2014 Q3	71	184	222			440
2014 Q4	75	190				455
2015 Q1	76					470

Cumulative Paid Losses

AY \ Age	3	6	3/6	LDF
2014 Q1	63	164	38.4%	2.603
2014 Q2	68	171	39.8%	2.515
2014 Q3	71	184	38.6%	2.592
2014 Q4	75	190	39.5%	2.533
2015 Q1	76			
Wtd Avg			39.1%	2.560

1

Cumulative Paid Losses

AY \ Age	6	9	9/6	LDF
2014 Q1	164	210	78.1%	1.280
2014 Q2	171	216	79.2%	1.263
2014 Q3	184	222	82.9%	1.207
2014 Q4	190			
2015 Q1				
Wtd Avg			80.1%	1.249

1

Loss Development Factors (LDFs)

AY \ Age	3-6	6-9	9-12	12-15	Earned Premium
2014 Q1	2.603	1.280	1.000	1.000	400
2014 Q2	2.515	1.263	1.000		420
2014 Q3	2.592	1.207			440
2014 Q4	2.533				455

Wtd Avg	2.560	1.249	1.000	1.000
Avg	2.561	1.250	1.000	1.000
Median	2.562	1.263	1.000	1.000

Loss Development Factors (LDFs)

AY \ Age	3-6	6-9	9-12	12-15
Selected	2.560	1.249	1.000	1.000
Cumulative LDF	3.197	1.249	1.000	1.000
% Paid	31.3%	80.1%	100%	100%
% Unpaid	68.7%	19.9%	0%	0%

1

Development Factor Method

AY \ Age	Paid to Date	Cumula tive LDF	DFM	Unpaid Losses
2014Q1	210	1.000	210.0	-
2014 Q2	216	1.000	216.0	-
2014 Q3	222	1.000	222.0	-
2014 Q4	190	1.249	237.3	47.3
2015 Q1	76	3.197	243.0	167.0
			-	044.0

Earned Premium	Loss Ratio
400	52.5%
420	51.4%
440	50.5%
455	52.2%
470	51.7%

214.3

Development Factor Method

AY \ Age	Paid to Date	Cumula tive LDF	DFM	Unpaid Losses
2014Q1	210	1.000	210.0	-
2014 Q2	216	1.000	216.0	-
2014 Q3	222	1.000	222.0	-
2014 Q4	190	1.249	237.3	47.3
2015 Q1	96	3.197	306.9	210.9
				250 2

Earned Premium	Loss Ratio
400	52.5%
420	51.4%
440	50.5%
455	52.2%
470	65.3%

258.2

High Leverage on years with a high LDF

Methods

Loss Development Method	 Assumes Rate at which losses are paid (or incurred) is constant Does not handle changing inflation, trend or mix of business well Can lead to volatile results
Bornhuetter- Ferguson	 Reduces Volatility in Claim Liability Estimate Ignores Recent Experience in estimating Claim Liability Not always clear what to use for <i>a priori</i>
Cape Cod	 Uses Experience to estimate the a priori Loss Ratio
Generalized Cape Cod	 Allows the <i>a priori</i> to vary by Accident Year
Benktander	 Apply BF. Use the Ultimate from BF as a priori, and apply BF again Optimal – in the sense that it has very low MSE of the estimate vs. the actual result
	 More Stable then LDF, and considers actual experience to date

Cape Cod

AY \ Age	Paid to Date	Cumul ative LDF	Earned Premiu m	% Paid	EP × %Paid
2014Q1	210	1.000	400	100%	400.0
2014 Q2	216	1.000	420	100%	420.0
2014 Q3	222	1.000	440	100%	440.0
2014 Q4	190	1.249	455	80.1%	364.5
2015 Q1	96	3.197	470	31.3%	147.1
	934				1,771.6

$$\frac{934}{1,771.6} = 52.7\%$$

Bornhuetter-Ferguson with Cape Cod LR = 52.7%

AY \ Age	Paid to Date	Cumula tive LDF	Earned Premium	a priori	BF	Unpaid Losses	Loss Ratio
2014Q1	210	1.000	400				52.5%
2014 Q2	216	1.000	420				51.4%
2014 Q3	222	1.000	440				50.5%
2014 Q4	190	1.249	455	239.8	237.8	47.8	52.2%
2015 Q1	96	3.197	470	247.7	266.2	170.2	65.3%

218.0

BF Ultimate = $96 + (1 - \frac{1}{3.197}) \cdot 247.7 = 266.2$ BF Reserve = $68.7\% \cdot 247.7 = 170.2$

AIG

18

Benktander

AY \ Age	Paid to Date	LDF	DFM	BF	Benkta nder	Benktand er Unpaid
2014Q1	210	1.000	210.0	210.0		
2014 Q2	216	1.000	216.0	216.0		
2014 Q3	222	1.000	222.0	222.0		
2014 Q4	190	1.249	237.3	237.8	237.4	47.4
2015 Q1	96	3.197	306.9	266.2	278.9	182.9
Unpaid			258.2	218.0	230.3	

Benktander Ultimate = $96 + (1 - \frac{1}{3.197}) \cdot 266.2 = 278.9$

BF Reserve = $68.7\% \cdot 266.2 = 182.9$

Benktander

AY \ Age	Paid to Date	LDF	DFM	BF	Benkta nder	Benktand er Unpaid
2015 Q1	96	3.197	306.9	266.2	278.9	182.9

A priori = 247.7

$$\frac{1}{LDF} = \%$$
 Paid = 31.3%

- BF is the weighted average of DFM and the Loss Ratio Method
- Benktander is weighted average of DFM and BF
- In both cases DFM gets the weight $\frac{1}{LDF} = \%$ Paid

 $306.9 \cdot 31.3\% + 247.7 \cdot 68.7\% = 266.2$ $306.9 \cdot 31.3\% + 266.2 \cdot 68.7\% = 278.9$

Methods

Loss Development Method	 Assumes Rate at which losses are paid (or incurred) is constant Does not handle changing inflation, trend or mix of business well Can lead to volatile results
Bornhuetter- Ferguson	 Reduces Volatility in Claim Liability Estimate Ignores Recent Experience in estimating Claim Liability Not always clear what to use for <i>a priori</i>
Cape Cod	 Uses Experience to estimate the a priori Loss Ratio
Generalized Cape Cod	 Allows the <i>a priori</i> to vary by Accident Year
Benktander	 Apply BF. Use the Ultimate from BF as a priori, and apply BF again Optimal – in the sense that it has very low MSE of the estimate vs. the actual result More Stable then LDF, and considers actual experience to date

Estimating Claim Liabilities Advanced

Inflation CY Trend	 DFM method assumes constant inflation historically and into the future Cannot handle changing CY Trend
Changing Patterns	 If LDF Patterns are changing – Find out Why Speak to Claims and Product Focus on Recent Experience
Know Your Market	 Read Articles, Journals about your Industry Keep informed of market trends Know your general economic environment

Outliers	 May be reasonable to remove They can have an outsize impact on the Weighted LDF
Exposures Bases	 Earned Premium is often used (maybe adjust for Net Trend (Premium – Loss) # of Vehicles, # of Homes Workers Compensation - \$ of Wages, # of Employees – or a mix of both
ULAE	Paid to Paid MethodClaim Counts Methods
Talk to Business	 If you see anomalies in the triangle, ask They know what is happening with their Portfolio Mix and Claims Better to find out something change before you submit results, then after

F icker Longe	 Forecast # of Unpaid Claims & Severity; Multiply
Fisher-Lange	 Severity depends on Accident Year and Age
	 Explicit Inflation assumptions can be used
Estimating the	 Curves
Tail	 Extrapolation
	 Madel 2 Dimensional Row (AV) Column (Age) Diagonal (CV)
2 1001	 Model 3 Dimensions: Row (AY), Column (Age), Diagonal (CY)
3 way	 Able to handle changes in CY Trend and portfolio mix
Parameters	 Difficult to fit – since there can be so many parameters
	 Given: Mean and Variance for Incremental Loss in each Cell
	• Residuals: $\frac{A-E}{\sqrt{E}}$ for each historical cell
Bootstrapping	 Sample the residuals to create a sampled historical triangle
	 Forecast Claim Liability based on the historical triangle (DFM, BF, etc.)
	 Do this multiple times to determine a distribution of the Claim Liability

Talk to Claims	 They are the closest to any changes in loss trends Inform you of any changes to their process Can work with them to gain knowledge of the Life of a Claim
Notes to the Actuary	 Listen to Product Management. They know changes to their product better than anyone else It's not good enough to say the LDF is higher – Why is it higher? If Product fights you, you will do better if you understand their business
Notes to the Product Manager	 Engage the actuary in discussions about your book You don't always know which bit of information is useful to her Be Respectful and Honest. The actuary will value your opinion
Segmentation Within a Line of Business	 Coverages may have different behavior (Auto PD vs TPL) A group of similar policies may have undue influence on the rest of the book

