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Review of Linear Models 

Classical Linear Model 
 Response:  𝑌~𝑁 𝑋𝛽, 𝜎2  

 𝑋𝛽 is a linear function that 
describes how the expected 
values vary based on 
characteristics in the data 

 Linear:  𝛽0 + 𝛽1𝑋1
2 + 𝑠𝑖𝑛 𝛽2𝑋2  

 Non-linear:  𝛽1𝑋1𝑒
𝛽2𝑋2 

 Constant Variance 
 

Generalized Linear Model 
 Response:  Poisson, Gamma, 

Binomial, etc. 

 𝑌~𝐹 𝜋, 𝑅  

 Expected Value:  

  𝐺 𝐸 𝑌 −1 = 𝑋𝛽 

 Variance is a function of 
expected value 

 Responses are independent 
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Generalized Additive Models 

 Linear predictor has a more general form 

 𝐸 𝑌|𝑋1, 𝑋2, ⋯𝑋𝑝 = 𝛼 + 𝑓1 𝑋1 + 𝑓2 𝑋2 + ⋯+ 𝑓𝑝 𝑋𝑝  

 

 𝑓𝑖 𝑋𝑖  are non-parametric smoother functions 

 Smoothing Splines 

 Kernel Smoothers 

 Local Linear Regression 

 But can also be parametric functions, too 
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What Does That Mean in Real Life? 
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• Fit models with less assumptions 

• No ‘nice’ polynomial shapes are necessary 

• No variance assumptions 



When Can I Fit a GAM? 

 You can fit a GAM with any data where you might try fitting LMs, GLMs, 

and GLMMs 

 GAMs are more general and with less assumptions 

 Common Examples 

 LDF fitting 

 Large data sets with complicated interaction effects 

 Models with many parameters but not a lot of data per parameter 

 Fitting a smoothed trend line that allows the trend to vary by year 
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GAM Tradeoffs 

Advantages 
1. Useful for non-parametric and semi-

parametric data 

2. Useful when data doesn’t fit LM/GLM 

assumptions 

3. Can paste splines directly into Excel  

 

Disadvantages 
1. Output may be more difficult to 

interpret to regulators and business 

side  

2. Must be wary of over-fitting 
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Let Software Do the Hard Work! 

R  

 Packages 

 gam 

 mgcv – this package automatically 

selects smoothing factors 

SAS 

 PROC GAM 

 SAS 9.2 
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Simple GAM Example 

 Smoothing to data can provide a very good fit 
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GAM Fitting to Noisy Data 

 Smoothing to data can sometimes cause over-fitting though 

 If a good parametric fit exists, use that instead 
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Amount of Smoothing Can be Varied 

 DF = Degrees of Freedom = the number of parameters we are using 

to smooth 

 A GAM ranges from a linear curve to fitting each point exactly 
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Some R Code for the Curious 

 x <- 1:10 

 y <- log(x) 

 

 plot( x, y, type='l' ) 

 

 fit.lm <- lm( y ~ x ) 

 lines( predict( fit.lm ), col='blue' ) 

 

 library(gam) 

 fit.gam <- gam( y ~ s(x, df=5) ) 

 lines( predict( fit.gam ), col='red' ) 
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Splines 

 GAMs work by generating splines 

 These can also be copied and 

pasted into Excel 

 

 In R: 

 library(splines) 

 ns( 1:20, df=3 ) 
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GAM Practical Application: LDF Fitting 

 LDF patterns – Difficult to find a good parametric curve 

 A GAM can be used to help smooth the curve to the data 

 Will show an approach here that combines best features of two 
published models:  the Inverse Power Curve (Extrapolating, 

Interpolating, and Smoothing Development Factors, Sherman, 

1984) and England and Verrall’s GAM model (A Flexible Framework 

For Stochastic Claims Reserving, 2001) 
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GAM Practical Application: LDF Fitting 

 Inverse Power Curve 

 Good: Simple procedure that can fit a portion of the LDFs well 

 Bad: Struggles in many lines to provide a good fit to the entire curve 

 England & Verrall’s GAM Model 

 Good: Uses a GAM to get a nice fit to the incremental loss pattern (within the 

common GLM loss development framework) 

 Bad:  

 Negative values difficult to deal with 

 Some of the resulting LDFs can be difficult to interpret when comparing to 

the empirical LDFs 

 More difficult to implement: Need to find correct Tweedie power 

 Can’t implement in Excel 

 Hard to incorporate credibility (teaser) 
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Proposed Approach 

 Smoothed Inverse Power Curve using GAMs (Korn 2015?) 

 

 Inverse Power Curve: 

 log(LDF – 1) = A + B log(t) 

 

 Smoothed Inverse Power Curve: 

 log(LDF – 1) = A + s( log(t) ) 

 Where “s” means GAM smoothing 

 (Note the smoothing is done on log(t)) 
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Smoothed Inverse Power Curve 

 Comparison of two approaches on 
simulated data 

 This same pattern has been observed 
on actual data, where the inverse 
power curve has trouble making the 
“turn” 

 The smoothed inverse power curve 
does a good job of smoothing out the 
volatility  

 (No, I did not fish for a good example) 
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Still Interested in GAMs? 

 Elements of Statistical Learning 

 By Hastie and Tibshirani 

 Free download:  

http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf 

 

 Stochastic Claims Reserving in General Insurance 

 By England and Verrall 
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Review of Linear Models (Again) 

Classical Linear Model 
 Response:  𝑌~𝑁 𝑋𝛽, 𝜎2  

 𝑋𝛽 is a linear function that 
describes how the expected 
values vary based on 
characteristics in the data 

 Linear:  𝛽0 + 𝛽1𝑋1
2 + 𝑠𝑖𝑛 𝛽2𝑋2  

 Non-linear:  𝛽1𝑋1𝑒
𝛽2𝑋2 

 Constant Variance 
 

Generalized Linear Model 
 Response:  Poisson, Gamma, 

Binomial, etc. 

 𝑌~𝐹 𝜋, 𝑅  

 Expected Value:  

  𝐺 𝐸 𝑌 −1 = 𝑋𝛽 

 Variance is a function of 
expected value 

 Responses are independent 
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Correlated Losses 

 But in the real world losses may not be independent 

 Why? 

 Hierarchical Data – Correlation can exist among loss data when the risks 
come from the same territory or region 

 

 

 

 Repeated Measures - Unless you have 0% retention, correlation can exist 
among records as some of them will represent the same risk repeatedly 
observed over time 
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Mixed Effect Models to the Rescue! 

 

 Linear Predictor contains fixed effects and random effects 

 𝑋𝛽 + 𝑍𝑏 

 𝑍~𝑁 0, 𝐺  

 G is a covariance matrix that can reflect the extra variability and the correlation within the 
levels of a territory or across time  

 Flexible enough to specify different G side covariance structures 

 Response can still be Normal or from Exponential Class 
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LM 

GLM 

LMM 

GLMM 



What if I Use a LM/GLM Anyway?  

Linear Model 
 LM thinks it estimates this: 

𝑌~𝑁 𝑋𝛽, 𝑅  

 But it actually estimates this: 

𝑌~𝑁 𝑋𝛽, 𝐺 + 𝑅  

 Result: correct parameter estimates 
but incorrect covariance estimate 

and distorted alpha levels 

Generalized Linear Model 
 GLM thinks it estimates this: 

𝑌~𝐹 𝜋, 𝑅  

 But it actually estimates this: 

𝑌~𝐹 𝜋  , 𝑇𝐺𝑇 + 𝑅  

 Result:  Incorrect parameter estimates 
and incorrect covariance structure 

and distorted alpha levels 
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Don’t Do Heavy Math by Yourself!   

Use Software! 

R 

 Package:  lme4 

 Can fit common distributions but not 

the over-dispersed Poisson or Tweedie 

 

SAS 

 PROC GLIMMIX 

 SAS 9.1 and later 

 Can fit common distributions and over-

dispersed Poisson 

 Uncertain about Tweedie 
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Simulation Example - GLMM 

 Random effects: 

  Groups    Name        Variance Std.Dev. Corr 

  territory (Intercept)    0.1525   0.3905        

                         A1           0.3756   0.6129   0.27 

 Number of obs: 20000, groups:  territory, 100 

 

 Fixed effects: 

                   Estimate Std. Error z value Pr(>|z|)     

 (Intercept)  2.03836    0.03917   52.03   <2e-16 *** 

 A1                 0.61291    0.06135    9.99   <2e-16 *** 
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Simulation Example - GLM 

 Coefficients: 

                       Estimate  Std. Error   z value Pr(>|z|)     

 (Intercept) 2.303576   0.002483   927.8   <2e-16 *** 

 A1               0.671555   0.002483   270.5   <2e-16 *** 
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Actual GLMM GLM

Base Class 7.4 7.6 10.0

A1 12.2 14.1 19.6

Expected Counts



Practical Application – Credibility Weighting 

 A GLMM with a normal distribution and an identity link will produce 

identical results as the Buhlmann-Straub method 

 Benefits of GLMM: 

 Easier to automate – no need to manually calculate the 

within and between variances 

More flexibility 

More complicated regression models, such as hierarchal 

and multi-dimensional 

Ability to handle different link functions (e.g. log, logit),  

non-normal errors, and continuous variables 

 A disadvantage is that a GLMM is harder to use from Excel 
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Credibility Weighting of Expected Loss Ratios/Costs 

 Don’t just credibility weight the IBNR portion! – This will 

be credibility weighting only half of the data.   

 

 Don’t credibility weight the selected ultimates from a BF 

(or similar) method! – That would be including what did 

NOT happen (and lowering the variance = too much 

credibility). 

 

 Use the observed experience! 
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Coin Flipping Analogy 

 First Time:  20 Flips 

 15 Heads, 5 Tails = 75% Heads 

 

 Second Time (Same Coin):  5 Flips  (out of 20) 

 0 Heads, 5 Tails 

 IBNR (BF Method):  11.25 Heads, 3.75 Tails 

 Ultimate:  11.25 Heads, 8.75 Tails = 56.25% Heads 

 

 What’s the variance?? 
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 Instead, use a Cape-Cod-like method: 

 

 LR per Year = Reported Losses / Used Premium (= chain ladder) 

 

 Initial Weight per Year = Used Premium 

 

 Then apply an off-balance factor so that the total weight for 

each segment equals the actual premium 
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Credibility Weighting of Expected Loss Ratios/Costs 



 Weights: 

 GLMMs use the same weight for credibility as they do for the regression 

 For calculating the variances, the weight is assumed to be the number of observations 

 Premium Weights = Full Credibility 

 Claim Count Weights = Inconsistencies 

 

 To reconcile:  (Really use weights as above instead of Premium) 

 K = Claim Count / Premium (for all policies) 

 For each policy, Weight(i) = Premium(i) x K 

 Total weight will be consistent with true number of observations and we will still be 

weighting by premium 
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Credibility Weighting of Expected Loss Ratios/Costs 



 Structure of the GLMM: 

 

 Normal/Normal (is not the same as assuming that loss ratios are 

normally distributed) 

 

 Link function: 

Log link:  Multiplicative  (dealing with 0s) 

Identity link:  Additive 
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Credibility Weighting of Expected Loss Ratios/Costs 



 library(lme4) 

 fit <- glmer( lr ~ ( 1 | sic1 ) + ( 1 | sic2 ), weights=w, data=mydata, 

family=gaussian(link=‘log’) ) 

 fixef(fit) 

 ranef(fit) 
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Some R Code for the Curious 



Another Practical Use – Credibility 

Weighted Interaction Terms 

 State x Industry Example: 

 No interaction:  If New York is running 20% worse overall, it will be 20% worse in every single industry 

 Not Enough Information! 

 

 With interaction term:  Every single state x industry combination will be assigned a loss ratio based 
on its experience alone 

 Not Enough Data! 

 

 Credibility weighted interaction term:  If New York is running 20% worse overall, this will be the 
complement of credibility for each industry 

 Makes the most out of limited data 

 In R:  “( 1 | state:industry )” 
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Uneven Hierarchies 

 A GLM will not produce coefficient values 
for C1 and D1 since they are redundant 

 A GLMM will  Double Credibility! 

 

 To handle, create a dummy variable that is 1 

for A & B cells, and 0 for C & D cells 

 For the lowest subgroup, create the random 
effect as a slope parameter on this dummy 
variable 

 This will cause C1 and D1 to not be assigned 
coefficients 

 In R:  ( 1 | group ) + ( dummy | subgroup ) 
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Other Practical Uses 

 Incorporating credibility into pricing or other GLMs 

 Credibility weighting of trend (if you have enough data) 
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Still Interested in GLMMs? 

 Further Reading: 

 Generalized Linear Mixed Models:  Modern Concepts, Methods and 

Applications 

 By Walter Stroup 

 Examples for SAS 

 Mixed-Effect Models in S and S-Plus 

 By Pinheiro and Bates 

 Written for R 
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