Dr Frankstein Build The GLM What Could Go Wrong?

Dr Paul Beinat^{1,2,3,4,5}

- 1. NeuronWorks
- 2. Centre for Quantum Computation and Intelligent Systems, UTS
- 3. Advanced Analytics Institute, UTS
- 4. Data Science Australia, UTS, UMelb, MonashU, UNSW, UQ
- 5. EagleEye Analytics

Agenda

- The "systematic/random" conjecture
- Experimental design and Results
- Linear as in GLM
- When It's Not Poisson
- Standard Errors
- Ensembles
- Discussion

The systematic/random conjecture

• Multivariate regression has been taught as

 $Y = X.A + \varepsilon$

(Note: this is the "fancy" version of Y = signal + noise)¹

 Signal + noise = systematic and random components

1 Introduction to Ratemaking *Multivariate Methods* http://www.casact.org/education/rpm/2009/handouts/cooksey.pdf

The systematic/random conjecture

If the MLR assumptions don't work well for insurance, then change them! With the same general approach, but the following assumptions, you've transitioned from MLRs to GLMs.

1. (*Random Component*) Observations are independent, but come from one of the family of exponential distributions.

2. (Systematic Component) X.A is called the linear predictor, or η.

3. (*Link function*) The expected value of Y, E(Y), is equal to g-1(η).

1 Introduction to Ratemaking *Multivariate Methods* http://www.casact.org/education/rpm/2009/handouts/cooksey.pdf

The systematic/random conjecture

- Is this appropriate?
 - Are the components separable
 - Signal and noise
 - Systematic and random
 - Do modern regression techniques achieve this?
 - Is maximum likelihood regression stable?
 - How can we tell?
- We need a controlled experiment

- Aim
 - Design of a controlled experiment to test how much data noise impacts regression
- Data
- Data strategy
- Regression approach
- Comparison metrics

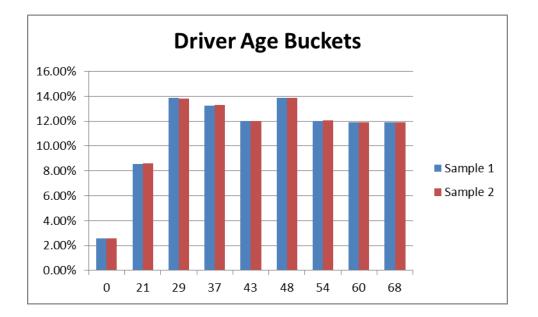
- Data
 - One experience data set
 - PPA Collision coverage of 3 years
 - 1.8M years exposure, 75k claims
 - Very well-behaved data

- Data Strategy
 - Divide experience data into 2 samples
 - Exclusively at random
 - Each sample has the same joint distribution of variables
 - Each sample has
 - 900k years exposure
 - 37.5k claims

	Claim Frequency	Claim Severity	Loss Cost
Sample 1	4.19%	3680	155
Sample 2	4.16%	3718	154

- Data Strategy
 - Variables selection
 - Top 50 variables by signal strength chosen by
 - Claim frequency
 - Claim severity
 - Loss cost
 - Based on all the data
 - Variables bucketing (binning) automatically
 - Categorical variables
 - Categories that have at least 10% exposure
 - Ordinal variables
 - Optimal buckets by signal type (up to 10 but usually much less 2)
 - Based on all the data

- Variable bucketing
 - Driver age buckets for claims frequency relative exposure
 - Less buckets for severity and loss cost
 - Sample consistency(unsurprising)



- Regression Approach
 - Divide each sample into training and validation data
 - 70%-30% at random
 - Compare traditional and modern methods
 - GLM
 - Matrix ensemble
 - Claim Frequency

- GLM
 - Log link
 - Poisson, gamma, Tweedie distributions
 - Forward stepwise model selection
- Matrix ensemble
 - Members (base learners) placed in a matrix so that
 - Columns perform variance reduction
 - Rows perform bias reduction
 - Talon base learner
 - Un-optimized choices
 - 10% exposure for claim frequency
 - 4000 claims for severity and loss cost
 - Matrix size is 10 columns and 50 rows

- Selecting models
 - GLM based on:
 - AIC as calculated on the validation data
 - BIC as calculated on the validation data
 - The minimum of the appropriate deviance as calculated on the validation data.
 - AIC as calculated on the training data
 - BIC as calculated on the training data
 - Matrix ensemble
 - No choice possible model is self defining

- Comparison metrics
 - For each model chosen apply the model to both data samples and then compare observed estimates

• Dispersion=
$$2(e_1-e_2)/(e_1+e_2)$$

• Difference =
$$(e_1 - e_2)$$

Where e_1 , e_2 represent estimates from sample 1 and 2 based models

• Accumulate

Dispersion		Difference	
-0.5	< -0.5	-200	< -200
-0.2	[-0.5,-0.2)	-150	[-200,-150)
-0.1	[-0.2,-0.1)	-100	[-150,-100)
-0.05	[-0.1,-0.2)	-75	[-100,-75)
-0.02	[-0.05,-0.02)	-50	(-75,-50)
-0.01	[-0.02,-0.02)	-20	[-50,-20)
0	(-0.01,0.01)	0	(-20,20)
0.01	[0.01.0.02)	20	[20,50)
0.02	[0.02,0.05)	50	[50,75)
0.05	[0.05,0.1)	75	[75,100)
0.1	[0.1,0.2)	100	[100,150]
0.2	[0.2.0.5]	150	[150,200)
0.5	> 0.5	200	>200

Results – Claim Frequency

- Select optimum GLM models
 - How many variables to include
 - Note training and validation based AIC and BIC

	GLM Training AIC	GLM Training BIC	GLM Validation AIC	GLM Validation BIC	GLM Validation Deviance
	AIC	ыс	Valluation AIC		Devidince
Sample 1	35	15	18	15	42
Iteration	55	15	10	15	42
Sample 2			4.0	4.0	
Iteration	32	14	18	13	36

Results – Claim Frequency

- Dispersion of estimates
 - Based on applying pairs of models to all the data

Dispersion	GLM Training AIC	GLM Training BIC	GLM Validation AIC	GLM Validation BIC	GLM Validation Deviance	Ensemble
-0.5	0%	0%	0%	0%	0%	0%
-0.2	3%	3%	4%	6%	3%	0%
-0.1	11%	16%	11%	13%	11%	5%
-0.05	12%	11%	12%	13%	12%	14%
-0.02	10%	7%	9%	8%	10%	15%
-0.01	4%	3%	3%	3%	4%	6%
0	7%	6%	7%	5%	7%	13%
0.01	4%	3%	4%	3%	4%	6%
0.02	11%	10%	11%	7%	11%	16%
0.05	16%	17%	16%	12%	16%	18%
0.1	17%	19%	17%	22%	17%	7%
0.2	5%	5%	5%	8%	5%	0%
0.5	0%	0%	0%	0%	0%	0%
Mean	8.94%	9.85%	9.31%	11.19%	8.86%	5.13%

Results – Claim Frequency

• Maximum, minimum observed values

	GLM Training AIC	GLM Training BIC	GLM Validation AIC	GLM Validation BIC	GLM Validation Deviance	Ensemble
Model 1						
Min	0.003922	0.009872	0.007223	0.010492	0.003896	0.01135
Max	1.811758	1.362593	1.880287	1.298176	1.8865	0.10384
Model 2						
Min	0.000016	0.011671	0.010372	0.011671	0.000016	0.01338
Max	1.548286	1.303763	1.535855	1.303763	1.510621	0.10639
Ratios						
Model 1	462	138	260	124	484	9
Model 2	96768	112	148	112	94414	8

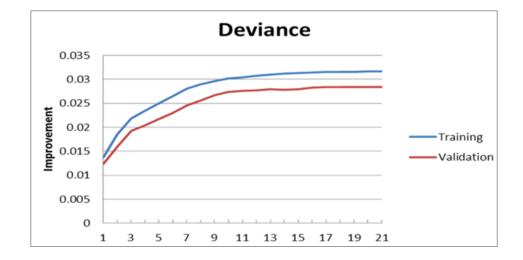
- Forward stepwise procedure
 - "I can fit better models than that!"
 - Better?
 - Data is given samples 1 and 2
 - Used conservative variable bucketing approach
 - Relatively few beta values
 - Forward stepwise very close to forward stepwise by 3
 - What would better mean?

- Lower AIC
 - Proposed by many practitioners
 - Fits a lot of variables
 - Approximately 30 for frequency
 - Different when calculated on validation data
 - Far fewer variables indicated
 - Is not a reliable complexity measure
 - Models are not more consistent
- Lower BIC
 - Heavier penalty for complexity
 - Same problem as AIC

- Lower deviance
 - Can't use on training data
 - Deviance decreases as more variables as included
 - Validation based calculation
 - Also indicated lots of variables
 - Models are not more consistent

- Better P values (What are P values?)
 - Use splines
 - Increases beta values
 - Allows better fit to training data
 - Models are not more consistent
- Smaller residuals
 - Proxy for deviance
- Better likelihood
 - Proxy for deviance

Could We See This Coming?



- What happens if we average the models
 - Average of 5 sample 1 models v sample 2 models
 - A naïve ensemble

Dispersion				
	Claim Frequency	Severity	Loss Cost	
-0.5	0%	0%	0%	
-0.2	1%	0%	3%	
-0.1	9%	1%	8%	
-0.05	13%	12%	11%	
-0.02	11%	22%	9%	
-0.01	4%	9%	3%	
0	8%	19%	8%	
0.01	4%	9%	4%	
0.02	12%	18%	12%	
0.05	18%	10%	18%	
0.1	16%	1%	20%	
0.2	3%	0%	4%	
0.5	0%	0%	0%	
Mean	7.71%	3.40%	8.82%	
Original Mean	8.86%-11.19%	4.03%-5.52%	11.17%-17.63%	

Linear – as in GLM

- Generalised LINEAR Model
 - What does that mean?
- Regression on Claim Frequency using age and car age
 - Observed data

Table 7. Initial data						
age	carage	claim				
Old	Old	0.2				
Old	New	0.3				
Young	Old	0.4				
Young	New	0.7				

Toble 7 Initial data

Generalised Linear models for Non-life Pricing – Overlooked Facts and Implications A Report from GIRO Advanced Pricing Techniques Working Party

Linear

• Using Poisson and log link

Table 8. GLM prediction of initial data

age	carage	claim	pred
Old	Old	0.2	0.1875
Old	New	0.3	0.3125
Young	Old	0.4	0.4125
Young	New	0.7	0.6875

• Old-Old now Increased to 0.25

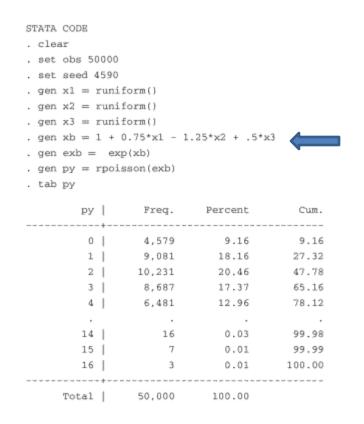
Table 9. GLM prediction of updated data

Age	carage	claim	pred	Change
Old	Old	0.25	0.21667	0.02917
Old	New	0.3	0.33333	0.02083
Young	Old	0.4	0.43333	0.02083
Young	New	0.7	0.66667	-0.02083

• Why does Young New change?

When It's Not Poisson Create a Poisson Data Generating Function

Stata code to create the simulated data consists of the following:



Modelling Count Data; Joseph Hilbe

Can We Find the Model - Yes

The mean and median of the Poisson response are 3.0. The displayed output has been amended:

50% 3				Me	an	3.00764				
. glm py ;	x1 x	2 x3,	fam	(poi)	nolog	1/	non-nur	neric mid	-he	ader
							output	deleted		
Generalize	ed 1.	inear	mod	els			No. of	obs	=	50000
Optimizat	ion	:	ML				Residua	al df	=	49996
							Scale p	parameter	=	1
Deviance		=	54	917.7	3016		(1/df)	Deviance	=	1.098442
Pearson			49	942.1	8916		(1/df)	Pearson	=	.9989237
							AIC		=	3.744693
Log likel:	ihoo	d =	-93	613.3	2814		BIC		=	-486027.9
	1			0	MI					
DУ	1	Coef		Std.	Err.	z	$P \ge z $	[95% Co	nf.	[Interval]
		+								
×l	1	.7502	913	.00	90475	82.93	0.000	.73255	86	.768024
x2	1	-1.240	165	.00	92747	-133.71	0.000	-1.2583	43	-1.221987
x3	1	.504	346	.00	89983	56.05	0.000	.48670	96	.5219825
_cons	1	.9957	061		00835	119.25	0.000	.97934	04	1.012072
. abic										
AIC Statis	stic	-	з.	74469	3	AIG	C*n	= 187234	. 66	5
nie beder										

Remove a Variable – x2

Generaliz	ed linear mo	odels		No. of	obs	=	50000
Optimizat	ion : M	Ĺ		Residu	al df	=	49997
				Scale	parameter	=	1
Deviance	=	73496.70743		(1/df)	Deviance	=	1.470022
Pearson	=	68655.76474		(1/df)	Pearson	=	1.373198
				AIC		=	4.116233
Log likel	ihood = -	102902.8168		BIC		-	-467459.7
1		MIO					
py	Coef.	Std. Err.	z	P> z	[95% Co	nf.	Interval
+-							
x1	.7513276	.0090462	83.05	0.000	.7335973	3	.7690579
x3	.4963757	.0090022	55.14	0.000	.4787317	7	.5140196
	.444481	.0075083	59.20	0.000	.429769		.4591969

- It's Over-dispersed No Longer Poisson
- Can be Modelled Correctly using the Negative Binomial

Implications?

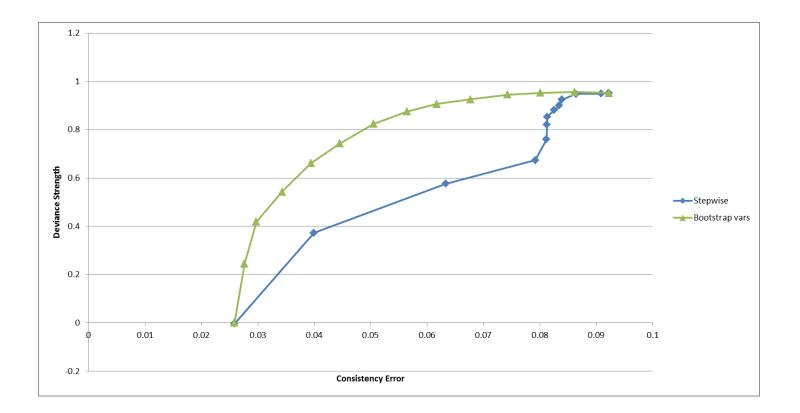
- Imagine Our Data Generating Function is Poisson
- We Only Have Imperfect Variables to Use
 - We Have This Situation
- Depending Which Variables We use
 - Over/Under-Dispersal Changes
 - Different Shape Parameter values for Negative Binomial
 - Shape Affects Deviance and Likelihood
 - Adding Variables Causes Deviance to Increase
 - Nested Models are Not Nested Any More!
 - AIC, BIC all increase as well

Standard Errors

- Standard Errors Reflect
 - Distribution of Predictor Variables YES
 - Variance of the Dependent Variable NO
 - Only Depend on X and W
- Assume that
 - Model Structure is Ideal
 - Transformed Errors are Normally Distributed
 - And So Do P Values

Ensembles of GLMs

- 100 Iteration GLMs on Bootstrap Samples
 - Tweedie Example



Conclusion

- Systematic/random conjecture
 - Doesn't look very real
 - Systematic polluted by randomness
 - Model statistics are of very limited help
 - Statistical inference uncertain!
- Linearity
 - The irrelevant influences all the model
- Negative Binomial Problem
 - Nested models exhibit increasing deviance
- Standard Errors
 - Not so good news