

GIS for Actuaries Part 1 CAS RPM 2016

Garrett Bradford March 15, 2016

GIS for Actuaries Workshop Outline

 I. Introduction to GIS: the basics
 II. Geocoding, Uncertainty, and GIS Data Sources
 III. Spatial Analysis and GIS Workflows

Introduction to GIS: the basics

- Science versus Systems
- GIS Applications
- Data types
- Coordinate Systems and Projections
- Data sources
- Assignment 1

Geographic Information Systems (GIS)

GIScience: "the science behind the systems"

 GISystems are used to capture, store, edit, analyze, and present geographic data

OBJECTID *	county *	Owner_SF_detached	policies	quotes
1	ABBEVILLE	5859	1	19
2	AIKEN	35926	37	174
3	ALLENDALE	1610	1	14
4	ANDERSON	43918	30	141
5	BAMBERG	3125	7	56
6	BARNWELL	3911	8	29
7	BEAUFORT	36393	629	11633
8	BERKELEY	35246	198	3427
9	CALHOUN	3317	29	170
10	CHARLESTO	71596	743	11770
11	CHEROKEE	9926	146	571
12	CHESTER	7047	45	142
13	CHESTERFIE	8191	6	37
14	CLARENDON	5575	54	350

Combining actuarial data with GIS

- Existing geographies:
 - territory, county, etc.
- Identifying new characteristics
 - Geocoding, joining on thirdparty data
- Spatial analysis:
 - Grouping and spatial statistics
 - Distance calculations

Comparison of example company's HO-3 in-force policy distribution (left) with estimate of total single family homes by county (right).

GIS Applications

- Desktop GIS applications:
 - ESRI's ArcMap
 - GRASS, QGIS,
 - ERDAS...
 - R, SAS, SQL
- Web applications:
 - ArcGIS Online
 - CartoDB
 - Leaflet

ArcGIS Desktop

- Table of Contents
 - All data in map document (.mxd)
 - Data frames, layers, etc.
- ArcToolbox
 - Geoprocesing tools
- Catalog
- Search
- Map tools
 - Zoom, pan...
- Customize
 - Add or remove tool bars

Data Types

- Point
- Line
- Polygon
- Raster

Data Types - Vector

Node	X	Υ
1	-81.420841	28.482257
Node	X	Υ
1	-81.420422	28.482211
2	-81.420890	28.482214
Node	X	Υ
1	-81.420560	28.482554
2	-81 /20550	20 102270
	-01.420333	20.402219
3	-81.420752	28.482278

Data Types - Raster

- Matrix of values
- Used for both thematic and continuous data

ncols	5
nrows	5
xllcorner	52668.03
yllcorner	59382.65
cellsize	250
11256)
32123	•
42142	
01212	

80	74	62	45	45	34	39	56
80	74	74	62	45	34	39	56
74	74	62	62	45	34	39	39
62	62	45	45	34	34	34	39
45	45	45	34	34	30	34	39

Images from ESRI ArcGIS Desktop Help

—Cell

http://resources.arcgis.com/en/help/

Data Formats

- Geodatabase
- Shapefiles (vector based)
- Rasters (pixel based)
- Others:
 - geoJSON
 - SQL geography/geometry
 - □ HER_terr.gdb
 □ territories_detail
 □ HER_region
 □ HER_terr
 □ HER_terr_lines
 □ territories_detail_Topology
 □ territories_simple
 □ HER_region_simple
 □ HER_terr_simple
 □ HER_terr_simple
 □ HER_terr_simple

11

C Milliman

H territories_simple_Topology
H territories_simple_Topology2

Coordinate Systems and Projections

- Geodesy: the measurement and representation of the Earth
- Earth is an ellipsoid, mostly

C Milliman

- The geoid: the 3D surface along which the pull of gravity is a specified constant
- Datums define point on the Earth's surface in terms of latitude and longitude
 - North American Datum of 1983 (NAD83)
 - World Geodetic System of 1984 (WGS84)
- Map projections: representing the Earth on a 2D map

Images NOAA eLearning module

https://coast.noaa.gov/digitalcoast/_/elearning/datums

Geocoding, Uncertainty, and GIS Data Sources

- Geocoding and location level data
- Data sources, scale, and topology
- Assignment 2

- Geocoding: attaching a location or lat/lon to a record
- Often occurs in the catastrophe modeling process
- Every geocoder should also provide a match score and/or match type
 - Examples:
 - Parcel Point
 - Address Point
 - Address Range
 - Street Name
 - Postal Code

D Milliman

r	PHYADDR1	221 CORNER TREE CT	5319 HANSEL AVE APT E5	752 RIDENHOUR CIR	
'	PHYCITY	ORLANDO	ORLANDO	ORLANDO	nput H
	PHYST	FL	FL	FL	- Ields
	PHYZIP	32820	32809	32809	
	LOC_NAME	StreetName	StreetAddress	PointAddress	
	MATCH_ADDR	Corner Tree Ct, Orlando, Florida, 32820	5319 Hansel Ave, Orlando, Florida, 32809	752 Ridenhour Cir, Orlando, Florida, 32809	
	LAT	28.571006	28.482046	28.453134	
	LON	-81.131031	-81.37137	-81.38701	

"...the precision of a geocoded address—and hence the retrieval of hazard conditions for the location—can be one of the strongest influences on damage and loss results."

C Milliman

16

Distance from Parcel Centroid:

- Address Point:
 25 m
- Street Point: 550 m
- Postal Point (not shown):
 4 km

Location	County	City	Match Type	Hurricane AAL
1	ORANGE	ORLANDO	Parcel	\$ 392.04
1	ORANGE	ORLANDO	Street	399.73
1	ORANGE	ORLANDO	City	384.88
2	BREVARD	MELBOURNE	Parcel	553.21
2	BREVARD	MELBOURNE	Street	603.85
2	BREVARD	MELBOURNE	City	650.16

Data Sources – U.S. Census

Census geographies

 Source for political boundaries and base map information including hydrology and road networks

https://www.census.gov/geo/maps-data/data/tiger-line.html

- Census data
 - Source for estimates of population, housing stock, available automobiles
 http://factfinder.census.gov/

Data Sources

- U.S. Geological Survey
 - National Hydrology Dataset (NHD) http://nhd.usgs.gov/
 - National Elevation Dataset (NED) <u>http://nationalmap.gov/elevation.html</u>
 - National Land Cover Database (NLCD) <u>http://www.mrlc.gov/</u>

NOAA

- Coastlines https://www.ngdc.noaa.gov/mgg/shorelines/
- National Weather Service http://www.nws.noaa.gov/gis
- National Hurricane Center
 http://www.nhc.noaa.gov/gis/
- State and local agencies
 - Ex. Parcels and land records from county assessors

Ottawa Montreal Detroi Chicago Cincinnati Washingto Atlanta Havana ont-au- Santo Punce Domingo HONDURAS Tegucigalpa /ador NICARAGUA Managua

Data Sources

- Check scale and accuracy of source data
 - Metadata
- Map topology
 - Combine data from multiple sources
 - Create seamless coverage (no gaps, no overlaps, etc.)

Three difference sources for county boundaries... and three different answers.

Data Sources

G Milliman

- Avoid re-projecting raster data
- If this is unavoidable, the use the appropriate technique
 - Nearest-neighbor for discrete or categorical data
 - Bilinear or cubic convulsion for continuous data

Data Sources – ZIP Codes

- Defined by USPS as address ranges
- Continually updated
- ZIP Codes are discrete data (points)Defined at the delivery address
- Often do not coincide with county or city boundaries
- Census ZIP Code tabulation areas (ZCTA)
 - Statistical areas that approximate ZIP codes

Spatial Analysis

- Vector data analysis
- Raster data analysis
- Grouping and spatial statistics
- Assignment 3

Data Management Toolbox

- Develop, manage, and maintain feature classes, datasets, layers, and raster data structures
 - Add XY Coordinates
 - Add/alter/calculate field
 - Dissolve features
 - Joins
 - Projections and Transformations

http://desktop.arcgis.com/en/arcmap/10.3/tools/data-management-toolbox/an-overview-of-the-data-management-toolbox.htm

Analysis Toolbox

- Subset
- Overlay
- Distance Calculation
- Basic statistics

INPUT

OUTPUT

NONE

OUTPUT

ALL

Spatial Analyst Toolbox

- Requires additional software license
- Provides spatial analysis and modeling tool for raster data
- Some tools work with vector as well (mostly as inputs)

Spatial Analyst Tools

🗞 Conditional

🍆 Density

🗞 Distance

🗞 Extraction

🍆 Generalization

🇞 Groundwater

🗞 Hydrology

 $\left[+ \right]$

+

 $\left| + \right|$

Spatial Statistics Toolbox

	8	Spatial	Statistics	Tool	S
--	---	---------	------------	------	---

- 🖃 🔖 Analyzing Patterns
 - 🛐 Average Nearest Neighbor
 - Interprete States (Getis-Ord General G)
 - Incremental Spatial Autocorrelation
 - Multi-Distance Spatial Cluster Analysis (Ripleys K Function)
 - 💐 Spatial Autocorrelation (Morans I)

🖃 🗞 Mapping Clusters

- Cluster and Outlier Analysis (Anselin Local Morans I)
- 💐 Grouping Analysis
- 🛐 Hot Spot Analysis (Getis-Ord Gi*)
- 🛐 Optimized Hot Spot Analysis
- 💐 Similarity Search
- 🗉 🗞 Measuring Geographic Distributions
- 🗉 🗞 Modeling Spatial Relationships
- 🛛 🗞 Rendering
- 🕀 🍇 Utilities

http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/an-overview-of-the-spatial-statistics-toolbox.htm

Aggregate Census Blocks

- Goal: create representative areas for some binned demographic variable
- Data:
 - Estimated population
 - Census Tract polygons
- Tools:
 - Join Field
 - Add/Calculate Field
 - Dissolve

Population per square kilometer by Census Tract

Aggregated Census Tracts

Buffer – Creating Distance Bins

- Goal: create polygon features for a distance to coast band
- Data:
 - Coastline line features
- Tool:
 - Multiple Ring Buffer

Overlay – DTC and Counties

- Goal: create polygon features that contain both DTC bin and county boundaries
- Data:
 - County polygons
 - DTC bin polygons
- Tool:
 - Union or Intersect

Minimum Permissible Elevation Model

- For a given area, assign a minimum elevation and use the elevation dataset to create a layer to be used in underwriting
- Tools used:
 - Feature to Raster (conversion)
 - Reclassify (spatial analyst)
 - Map Algebra (spatial analyst)

Example case showing ineligible areas near Punta Gorda, Florida

Grouping Analysis Example

- Grouping Analysis tool in ArcGIS
- Attempts to identify natural clusters
- Can use spatial relationships to define neighbors
 - Nearest neighbor
 - Contiguity
 - Triangulation
 - Custom Weights

Box-and-whisker plots of each output group relative to the total.

Example Grouping Analysis Output using Florida ZIP Codes with 5 output groups.

Modeled factors by ZIP Code

C Milliman

Interpolated factors

Thank you

Garrett Bradford Cartographer / GIS Analyst Milliman, Inc. 650 California Street, 17th Floor San Francisco, CA 94108 garrett.bradford@milliman.com (415) 394-3792

GIS for Actuaries Part 2 CAS RPM 2016

Garrett Bradford March 15, 2016

Assignment 1

- Adding data from the Catalog
- Symbolizing data
- Import and join tabular data
- Displaying XY location data
- Creating basic maps

Assignment 2

- Geocoding locations
- Mapping census data
- Joining policy level data to census geography

Assignment 3

- Distance calculations
- Territory construction with unions
- Working with Spatial Analyst
- Grouping Analysis

Thank you

Garrett Bradford Cartographer / GIS Analyst Milliman, Inc. 650 California Street, 17th Floor San Francisco, CA 94108 garrett.bradford@milliman.com (415) 394-3792