
Research as a
Collaborative
Effort

Christopher J.
Monsour

1

Quick Aside on ASCII and Unicode
•ASCII: 7-bit representations of characters for text. (Including non-
print characters like NULL.) So only 128 symbols in total.

•Historically: various local attempts to expand to 8- or 16-bit
representations to accommodate more.

•Almost universal now: Unicode (which represents even more than a
16-bit system could)…It has “code points” from U+000000 to
U+10FFFF (i.e., 220 + 216, or 1,114,112 possible characters, the
majority of which code points are still unassigned)

– Actually 220 + 216 – 211 = 1,112,064, since there are 2,048 illegal
codepoints

•Why can you still get away with ASCII?

Research as a
Collaborative
Effort

Christopher J.
Monsour

2

UTF-8 Encoding of Unicode

•First 128 code points correspond to ASCII

•Beginnings of bytes tell the role of the byte…0 = ASCII, 10 =
continuation byte, 110=start of two-byte sequence, etc.

•No code pointed above U+10FFFF actually allowed

Source: Wikipedia

Research as a
Collaborative
Effort

Christopher J.
Monsour

3

Internal Representation of Unicode

•Many languages still use UTF-16 representations when they store
unicode text in memory (wchar_t)

•These are a similar (but more complex) scheme that requires either
two bytes or four bytes depending on the character

•UTF -16 is less efficient for English (2 bytes vs 1). More efficient for
many East Asian languages (2 bytes vs 3)

•No codepoints are allowed above U+10FFFF or in the range
U+D800 to U+DFFF to keep compatible with UTF-16

	Quick Aside on ASCII and Unicode
	UTF-8 Encoding of Unicode
	Internal Representation of Unicode

