

Territorial Risk Classification

Peng Shi

Territorial risk classification using spatially dependent frequency-severity models

Peng Shi

University of Wisconsin - Madison

March 15, 2016

Outline

Territorial Risk Classification Peng Shi

- Territorial Risk Classification
- Peng Shi
- Introduction Modeling Data Inference Application Conclusion
- Non-life insurance often classifies risks geographically
- It is important for insurance operations
 - Marketing, underwriting, ratemaking ...
- Risk classification could be formulated in a regression setup
 - Common practice uses GLMs, e.g. frequency-severity and pure premium models
 - Claims model is built using micro-level (policy or claim) data
- Our goal: to build a claims model to create territory-level risk scores
 - Use aggregate claims data and use the two-part framework
 - Account for the spatially correlation and the association between frequency and severity
 - The score is used to supplement the claims modeling with micro-level data
 - We demonstrate applications in prediction and market segamentation

Two-part Specification

Territorial Risk Classification Peng Shi

Introduction

Modeling Data Inference Application Conclusion

Frequency model

- We model the number of policyholders in region i that incur at least one claims, denoted by $\mathbf{Y}_i^{\mathbf{f}}$
- Assume a binomial distribution

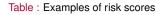
$$\begin{split} Y_i^f &\sim Bin(E_i,p_i) \\ \log\left(\frac{p_i}{1-p_i}\right) = x_i^f \pmb{\beta}_f + \phi_i^f \end{split}$$

- Severity model
 - we model the average amount of payment per policy in region *i* given occurrence of claims, denoted by Y_i^s
 - Assume a log-normal distribution

$$Y_i^s \sim LN(\mu_i, \tau^{-1})$$
$$\mu_i = x_i^s \boldsymbol{\beta}_s + \phi_i^s$$

Territorial Risk

Conclusion



Example	Score Function
1	$g(\boldsymbol{\theta}_i^f, \boldsymbol{\theta}_i^s) = p_i$
2	$g(\boldsymbol{\theta}_i^f, \boldsymbol{\theta}_i^s) = p_i/(1-p_i)$
3	$g(\theta_i^f, \theta_i^s) = \exp(\mu_i + \frac{1}{2}\tau^{-1})$
4	$g(\boldsymbol{\theta}_i^f, \boldsymbol{\theta}_i^s) = p_i \exp(\mu_i + \frac{1}{2}\tau^{-1})$
5	$g(\boldsymbol{\theta}_i^f, \boldsymbol{\theta}_i^s) = \sqrt{p_i} / (\exp(\tau^{-1}) - p_i)$

Territorial Risk Classifi-

Peng Shi

Introduction Modeling Data

Inference

Application Conclusion

Conditional distribution

$$\phi_i | \phi_{-i} \sim N\left(rac{\gamma}{m_i} \sum_{i \sim j} \phi_j, rac{1}{\lambda m_i}
ight), \ i = 1, \dots, n$$

- γ spatial dependence, λ spatial dispersion
- *m_i* denote number of neighbors for region *i*
- Joint distribution

$$\boldsymbol{\phi} \sim N_n(0, [\lambda(D-\gamma W)]^{-1})$$

- $D = \operatorname{diag}(m_1, \ldots, m_n)$
- W is the adjacency matrix, $w_{ii} = 0$, $w_{ii'} = 1$ if $i \sim i'$

Territorial Risk Classification Peng Shi

- Introduction Modeling Data Inference Application Conclusion
- Let φ = (φ'_f, φ'_s)' and v = (v'_f, v'_s)'. Based on linear model of co-regionalization (LMC)

$$\boldsymbol{\phi} = (B \otimes I_{n \times n}) \mathbf{v}$$

- v_f and v_s are two independent latent spatial processes
- B is non-singular
- Consider two cases
 - Separable model: v_f and v_s are identical
 - Inseparable model: v_f and v_s are not identical

Territorial Risk Classification

Peng Shi

Introduction Modeling Data Inference Application Conclusion

$$\boldsymbol{\phi} \sim N_{2n}(0, \Omega)$$

•
$$\mathbf{v}_f \sim N_n(0, (D - \gamma W)^{-1}), \mathbf{v}_s \sim N_n(0, (D - \gamma W)^{-1})$$

•
$$\Omega = [(D - \gamma W) \otimes \Lambda]^{-1}$$

• Identifiable up to
$$\Lambda^{-1} = BB'$$

•
$$\mathbf{v}_f \sim N_n(0, (D - \gamma_f W)^{-1}), \mathbf{v}_s \sim N_n(0, (D - \gamma_s W)^{-1})$$

• $\Omega = (B \otimes I_{n \times n})(I_{2 \times 2} D - \Gamma \otimes W)^{-1}(B \otimes I_{n \times n})'$
• $\Gamma = \operatorname{diag}(\gamma_f, \gamma_s)$

• Define $\Sigma = BB'$, use *B* as upper triangular Cholesky decomposition of Σ

Data

Territorial Risk Classification Peng Shi

Introduction Modeling

Data

Inference Application

Conclusion

- Personal automobile insurance data from the Commonwealth Automobile Reinsurers (CAR) in Massachusetts
 - The data represent experience from several insurance carriers
 - The dataset contains claims records about two million policyholders in year 2006
 - Claims data on two mandatory coverage
 - Liability and PIP
 - We look at combined coverage
 - Limited information on predictors
 - Rating group: policyholder characteristics
 - Territory group: defined by garage town (351 towns in Massachusetts)
- Info on vehicle characteristics is supplemented by ISO
 - Vehicle age, car type, other features...

Sampling

Territorial Risk Classification Peng Shi

Introduction Modeling Data Inference Application Conclusion

- Use 80% of data to build the model
 - Stratified sampling
 - Aggregate claims data at town level

• Use the rest 20% of data for application at micro-level observations

- Use 75% to build model at policy/claim level
- Use 25% for out-of-sample validation

Territorial Risk Classification

Peng Shi

Introduction Modeling Data Inference Application Conclusion

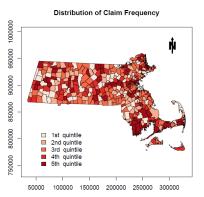
Table : Descriptive statistics of outcomes and covariates

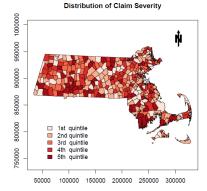
Variable	Description	mean	std	min	max
Response variable					
freq	Frequency of at least one claims	3.66	1.10	0.00	7.80
size	Average size of payments	3250.08	832.45	678.78	7291.09
Covariates					
young	Percentage of young driver	9.93	1.80	3.13	22.22
senior	Percentage of senior driver	15.01	5.10	0.00	39.03
vehage	Average vehicle age	5.40	0.27	4.56	6.67
lux	Percentage of luxury car	4.69	2.83	0.00	20.95
van	Percentage of van	7.85	1.63	3.80	22.22
pickup	Percentage of pickup truck	14.27	6.23	1.09	33.33
utility	Percentage of utility vehicle	24.76	4.42	11.11	58.14
awd	Percentage of vehicle with all wheel drive	41.65	9.28	26.93	77.08

Summary Statistics

Peng Shi

Introduction Modeling Data Inference Application Conclusion





Estimation

Territorial		Independent Aspatial Model		Bivari	Bivariate Spatial Model		
Risk Classifi-		Estimate	95% Credible Interval	Estimate	95% Credible Interval		
cation	Frequency Model						
Peng Shi	Intercept	-3.532	(-3.727, -3.337)	-3.211	(-3.713, -2.691)		
i chg om	young	-1.837	(-2.351, -1.315)	-0.862	(-2.088, 0.370)		
	senior	-1.670	(-1.850, -1.485)	-1.536	(-1.919, -1.144)		
	vehage	0.293	(0.264, 0.322)	0.227	(0.148, 0.304)		
Introduction	lux	2.429	(1.913, 2.931)	1.809	(0.740, 2.845)		
Modeling	van	-3.824	(-4.285, -3.347)	-4.144	(-5.372, -2.925)		
Data	pickup	-1.792	(-2.030, -1.549)	-1.818	(-2.361, -1.293)		
	utility	3.064	(2.780, 3.351)	1.943	(1.362, 2.539)		
Inference	awd	-3.038	(-3.262, -2.813)	-2.387	(-2.788, -1.979)		
Application	Severity Mod						
	Intercept	8.142	(7.000, 9.327)	7.634	(7.163, 8.158)		
Conclusion	young	-2.051	(-4.173, 0.103)	-1.719	(-3.734, 0.293)		
	senior	-0.670	(-1.395, 0.065)	-0.633	(-1.342, 0.059)		
	vehage	0.047	(-0.131, 0.215)	0.111	(0.014, 0.201)		
	lux	2.933	(0.800, 5.005)	3.333	(1.546, 5.187)		
	van	1.163	(-1.504, 3.806)	1.827	(-0.498, 4.126)		
	pickup	1.470	(0.442, 2.491)	1.544	(0.572, 2.560)		
	utility	1.767	(0.758, 2.798)	1.881	(0.857, 2.844)		
	awd	-2.212	(-2.813, -1.582)	-2.170	(-2.819, -1.444)		
	Dispersion	13.720	(11.730, 15.940)	17.420	(13.930, 22.710)		
	Dependence	Dependence Model					
	α_{f}			0.202	(0.009, 0.518)		
	α_s			0.463	(0.025, 0.934)		
	σ_{f}			16.930	(13.190, 21.410)		
MAR	σ_s			10.640	(0.363, 35.220)		
	ρ			0.833	(0.414, 0.998)		

Peng Shi

Introduction Modeling Data Inference Application Conclusion

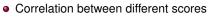
Table : Goodness-of-fit statistics for alternative models

Model	Description	DIC
1	Independent aspatial model	9,661
2	Independent spatial model	8,463
3	Intrinsic bivariate spatial model	8,361
4	Separable bivariate spatial model	8,323
5	Inseparable bivariate spatial model	8,262

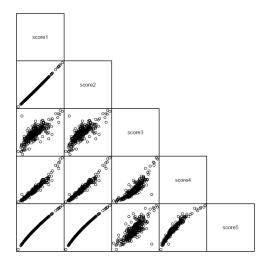
Summary of Scores

Territorial Risk Classification Peng Shi

Introduction Modeling Data Inference Application Conclusion



• Scores are calculated using posterior mean of parameters



Prediction

Territorial Risk Classification Peng Shi

- Introduction Modeling Data Inference Application Conclusion
- Use the score to supplement model building with micro-level data
- We compare out-of-sample prediction with and without score for different model specifications
 - Two-part model
 - Policy level: Logit + LN
 - Claim level: Poisson + Gamma
 - Pure premium model: Tweedie GLM
 - Use driver and car characteristics as predictors
- Out-of-sample prediction is evaluated using Gini statistics

Territorial Risk Classification Peng Shi

Introduction

Modelina

Inference

Application

Conclusion

Data

Gini Correlation Simple Gini FrequencyModel Logit: policy info only 3.501 4.252 Logit: policy info + town 6.000 7.288 Logit: policy info + score.freq 6.517 7.915 Poisson: policy info only 3.526 4.593 Poisson: policy info + town 6.108 7.957 Poisson: policy info + score.freq 6.571 8.560 SeverityModel LN: policy info only 2.668 100.073 LN: policy info + town 4.703 176.489 LN: policy info + score.sev 5.235 196.398 Gamma: policy info only 4.190 149.798 Gamma: policy info + town 5.554 198.644 Gamma: policy info + score.sev 6.128 219.134

Table : Out-of-sample validation for frequency-severity models

Peng Shi

Introduction Modeling Data Inference Application Conclusion Table : Out-of-sample validation for pure premium models

	Gini Correlation	Simple Gini
Tweedie GLM: policy info only	2.467	22.788
Tweedie GLM: policy info + town	4.015	37.095
Tweedie GLM: policy info + score.pp (offset)	4.287	39.611
Tweedie GLM: policy info + score.pp	4.287	39.613
Tweedie GLM: policy info + score.freq + score.sev	4.289	39.626
Two-part: Logit + LN	4.184	38.662
Two-part: Poisson + Gamma	4.288	39.618

Territorial Risk Classification Peng Shi

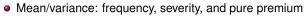
Introduction Modeling Data Inference Application Conclusion

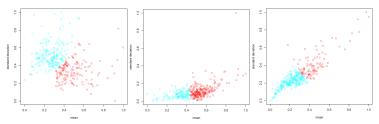
- Clustering customers for marketing purposes
- The model output can be used in clustering in a hierarchical manner
- Using K-medoids for clustering (Partitioning Around Medoids)
- Optimal number of clustering is based on Silhouette coefficient
- Based on mean/variance (Euclidean distance) and the entire distribution of the score (Jensen Shannon distance)

Market Segmentation

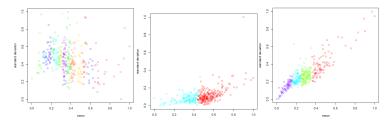
Territorial Risk Classification Peng Shi

Introduction Modeling Data Inference Application Conclusion





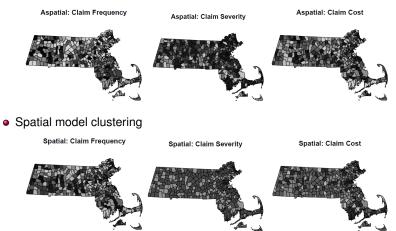
• Distribution: frequency, severity, and pure premium



Market Segmentation

Territorial Risk Classification Peng Shi

Introduction Modeling Data Inference Application Conclusion Aspatial model clustering



Conclusion

- Territorial Risk Classification Peng Shi
- Introduction Modeling Data Inference Application Conclusion
- We built a frequency-severity model using region-level aggregated claims data
- The model took into account the correlation across space as well as between frequency and severity components
- We demonstrated some applications in prediction and market segmentation based on the main output of the model territory risk score

Thank you for your kind attention.

Learn more about my research at: https://sites.google.com/a/wisc.edu/peng-shi/

