Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.

Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding - expressed or implied - that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.

- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

GLM I: Introduction to Generalized Linear Models

Ernesto Schirmacher

Liberty Mutual Insurance

Casualty Actuarial Society
Ratemaking and Product Management Seminar
March 14-16, 2016
Orlando, FL

Overview

Overview of GLMs

Personal Injury Claims

Intercept Only Models

One Continuous Predictor

One Discrete Predictor

Many Predictors

Key Concepts

Standard Linear Model Specification

$$
y=\beta_{0}+x_{1} \beta_{1}+\cdots+x_{k} \beta_{k}+\epsilon \quad \text { with } \epsilon \in N\left(0, \sigma^{2}\right)
$$

Standard Linear Model Specification

$$
y=\beta_{0}+x_{1} \beta_{1}+\cdots+x_{k} \beta_{k}+\epsilon \quad \text { with } \epsilon \in N\left(0, \sigma^{2}\right)
$$

A better way to think about this would be

$$
\mathbb{E}[y]=\beta_{0}+x_{1} \beta_{1}+\cdots+x_{k} \beta_{k}
$$

where $y \in N\left(\mu, \sigma^{2}\right)$ and $\mu=\beta_{0}+x_{1} \beta_{1}+\cdots+x_{k} \beta_{k}$ is the linear predictor.

Generalized Linear Model Specification

$$
g(\mathbb{E}[y])=\beta_{0}+x_{1} \beta_{1}+\cdots+x_{k} \beta_{k}+\text { offset }
$$

1. The link function is g
2. The distribution of y is a member of the exponential family
3. The explanatory variables x_{i} may be continuous or discrete
4. Offset terms have a known coefficient of 1 in the linear predictor

Mean-Variance Relationship

Mean

Personal Injury Dataset

The dataset contains 22,036 settled personal injury claims. These claims arose from accidents occurring from July 1989 through January 1999. This is the persinj.xls dataset featured in the book by de Jong \& Heller [2].

I have taken a random sample of 200 claims.
The variables are:

1. Settled Amount
2. Injury codes
3. Legal representation
4. Accident month

Derived variables:

1. Injured count
2. Accident injury code
3. Report month
4. Finalization month
5. Operational time
6. Report delay
7. Settlement delay

Variable Descriptions

Variable	Type	Comments
Settled Amount	Cont	range: $\$ 40$ to $\$ 85,000$
Injury Codes	Cat	Injury level: $1,2, \ldots, 6=$ death, $9=$ missing
Legal Rep.	Bin	Attorney involved? $1=$ Yes, $0=$ No
Accident Month	Coded	$1=$ July $1989,120=$ June 1999
Report Month	Coded	same as accident month
Fin. Month	Coded	same as accident month
Injured Count	Count	Number of persons injured: $1,2, \ldots, 5$
Acc. Injury	Cat	Highest injury code among those injured
Report Delay	Cont	\# months between accident and report
Settle. Delay	Cont	\# months between report and settlement

Histogram of Settlement Amount

Distribution of Settlement Amount

Settlement Amount: mean

Settlement Amount: mean \& standard deviation

Linear Model-Intercept only

Call:
$\operatorname{lm}($ formula $=$ total ~ 1, data $=$ spinj)

Residuals:

Min	1Q	Median	3Q	Max
-19913	-13570	-7199	7591	65110

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $19953137114.56<2 \mathrm{e}-16 * * *$

Signif. codes: $0{ }^{\prime} * * * ' 0.001^{\prime} * * ' 0.01^{\prime} *^{\prime} 0.05$ '.' 0.1 , ' 1

Residual standard error: 19380 on 199 degrees of freedom

Generalized Linear Model—Normal Id—Intercept only

```
Call: glm(formula = total ~ 1,
    family = gaussian(link = identity), data = spinj)
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-19913	-13570	-7199	7591	65110

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 375744867)

[^0]
Generalized Linear Model—Gamma Id—Intercept only

```
Call: glm(formula = total ~ 1,
    family = Gamma(link = identity), data = spinj)
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-3.2293	-0.9588	-0.4165	0.3407	1.9043

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 0.9438079)

[^1]
Generalized Linear Model—Gamma Log—Intercept only

```
Call: glm(formula = total ~ 1,
    family = Gamma(link = "log"), data = spinj)
```

Deviance Residuals:

Min	1Q	Median	3Q	Max
-3.2293	-0.9588	-0.4165	0.3407	1.9043

Coefficients:

Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$
$9.9011 \quad 0.0687 \quad 144.1 \quad<2 e-16 * * *$	

Signif. codes: $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 0.9438079)

> Null deviance: 252.05 on 199 degrees of freedom Residual deviance: 252.05 on 199 degrees of freedom AIC: 4366.6

Number of Fisher Scoring iterations: 6

Settlement Amount vs. Settlement Delay

Linear Model-Intercept and Slope

Call:
$\operatorname{lm}(f o r m u l a=$ total \sim settle.delay, data $=$ spinj)
Residuals:

Min	1Q	Median	3Q	Max
-37059	-10395	-5085	4366	51957

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	7614.05	1861.85	4.089	$6.28 \mathrm{e}-05$	$* * *$
settle.delay	832.30	97.44	8.542	$3.50 \mathrm{e}-15$	$* * *$

Signif. codes: $0{ }^{\prime * * * '} 0.001^{\prime * *} 0.01^{\prime *} 0.05$ ', $0.1^{\prime}, 1$

Residual standard error: 16610 on 198 degrees of freedom Multiple R-squared: 0.2693, Adjusted R-squared: 0.2656 F-statistic: 72.96 on 1 and 198 DF, p-value: $3.504 e-15$

Settlement Amount vs. Delay: Least Squares Line

Raw Residuals vs. Settlement Delay

Standarized Residuals vs. Settlement Delay

Many Flavors of Residuals

$$
\begin{aligned}
& \text { Raw } y-\hat{y} \text { or } y-\mu \text { or } y-\mathbb{E}[y] \\
& \text { Pearson }(y-\mu) / \sqrt{V} \\
& \text { Deviance } \operatorname{sgn}(y-\mu) \sqrt{\text { deviance }}
\end{aligned}
$$

Standarized Divide residual by $\sqrt{1-h}$, which aims to make its variance constant; where h are the diagonal elements of the projection ('hat') matrix, $H=X\left(X^{t} X\right)^{-1} X^{t}$, which maps y into \hat{y}
Studentized Divide residual by $\sqrt{\phi}$; where ϕ is the scale parameter
Stan \& Stud Divide residual by both standarized and studentized adjustments

Deviance

Distribution Contribution to Squared Deviance
Normal $\quad\left(y_{i}-\mu_{i}\right)^{2}$
Poisson
$2\left\{y_{i} \log \left(y_{i} / \mu_{i}\right)-y_{i}+\mu_{i}\right\}$
Gamma
$2\left\{-\log \left(y_{i} / \mu_{i}\right)+\left(y_{i}-\mu_{i}\right) / \mu_{i}\right\}$
Inverse Gaussian $\quad\left(y_{i}-\mu_{i}\right)^{2} /\left(\mu_{i}^{2} y_{i}\right)$

Gamma Log GLM-Intercept and Slope

Call: glm(formula = total ~ settle.delay,
family = Gamma(link = "log"), data = spinj)

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-3.0008	-0.8017	-0.3145	0.1991	1.8982

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	9.187173	0.102174	89.917	$<2 \mathrm{e}-16$	$* * *$
settle.delay	0.040473	0.005347	7.569	$1.39 \mathrm{e}-12$	$* * *$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 0.8310652)
Null deviance: 252.05 on 199 degrees of freedom Residual deviance: 206.47 on 198 degrees of freedom AIC: 4321.8

Number of Fisher Scoring iterations: 7

Gamma Model: Deviance Residuals vs. Settlement Delay

Poisson Log GLM-Intercept and Slope

```
Call: glm(formula = tot.amt ~ settle.delay,
    family = poisson(link = "log"), data = spinj)
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-229.41	-92.18	-42.51	35.74	299.99

Coefficients:

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$	
(Intercept)	$9.323 \mathrm{e}+00$	$8.583 \mathrm{e}-04$	10862.1	$<2 \mathrm{e}-16$	$* * *$
settle.delay	$3.280 \mathrm{e}-02$	$3.338 \mathrm{e}-05$	982.7	$<2 \mathrm{e}-16$	$* * *$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 3366902 on 199 degrees of freedom Residual deviance: 2515703 on 198 degrees of freedom AIC: 2517928

Number of Fisher Scoring iterations: 5

Poisson Model: Deviance Residuals vs. Settlement Delay

Legal Representation?

Gamma Log GLM-Legal Representation?

$$
\text { Call: } \begin{aligned}
\text { glm(formula } & =\text { total } \sim \text { settle.delay + legrep, } \\
\text { family } & =\text { Gamma(link }=\text { "log"), data }=\text { spinj) }
\end{aligned}
$$

Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.8152	-0.8183	-0.3115	0.2864	2.6778

Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$		
(Intercept)	8.64459	0.13476	64.148	$<2 \mathrm{e}-16$	$* * *$
settle.delay	0.04112	0.00539	7.628	$9.96 \mathrm{e}-13$	***
legrep1	0.70702	0.13989	5.054	$9.85 \mathrm{e}-07$	***

Signif. codes: $0{ }^{\prime * * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 0.8354751)
Null deviance: 252.05 on 199 degrees of freedom Residual deviance: 186.98 on 197 degrees of freedom AIC: 4300.9

Number of Fisher Scoring iterations: 8

Legal Representation: Linear Predictor

Legal Representation: Fitted Values

Legal Representation: Deviance Residuals

Number of Injured Persons

Gamma Log GLM-Many Predictors

```
Call: glm(formula = total ~ settle.delay + legrep + inj.count,
    family = Gamma(link = "log"), data = spinj)
```

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	8.722358	0.141721	61.546	$<2 \mathrm{e}-16$	$* * *$
settle.delay	0.042138	0.005222	8.069	$7.38 \mathrm{e}-14$	$* * *$
legrep1	0.786161	0.139411	5.639	$6.01 \mathrm{e}-08$	$* * *$
inj.count2	-0.300230	0.160788	-1.867	0.0634	.
inj.count3	-0.416338	0.177247	-2.349	0.0198	$*$
inj.count4	-0.216891	0.244640	-0.887	0.3764	
inj.count5	0.005267	0.254395	0.021	0.9835	

Null deviance: 252.05 on 199 degrees of freedom Residual deviance: 181.44 on 193 degrees of freedom AIC: 4302

Number of Fisher Scoring iterations: 9

Predicted Values

Settle Delay	Legal Rep?	Injured Count	Fitted Linear Predictor	
0	No	1	$8.7+0 \cdot 0.042=8.7$	$e^{8.7}=6003$
0	Yes	1	$8.7+0 \cdot 0.042+0.79=9.5$	$e^{9.5}=13360$
10	No	4	$8.7+10 \cdot 0.042-0.22=8.5$	$e^{8.9}=7332$

Many Predictors: Fitted Values

Summary Key Concepts: Link Function

The link function is the bridge between the space of the linear predictor and the space of the response.

Summary Key Concepts: Deviance

The deviance tells us how to measure the distance between an observation and its fitted value.

Distribution Contribution to Squared Deviance
Normal

$$
\left(y_{i}-\mu_{i}\right)^{2}
$$

Poisson
$2\left\{y_{i} \log \left(y_{i} / \mu_{i}\right)-\left(y_{i}-\mu_{i}\right)\right\}$
Gamma
$2\left\{-\log \left(y_{i} / \mu_{i}\right)+\left(y_{i}-\mu_{i}\right) / \mu_{i}\right\}$
Inverse Gaussian $\quad\left(y_{i}-\mu_{i}\right)^{2} /\left(\mu_{i}^{2} y_{i}\right)$

References

國 John M. Chambers, William S. Cleveland, Beat Kleiner, and Paul A. Tukey. Graphical Methods for Data Analysis.
The Wadsworth Statistics/Probability Series. Wadsworth International Group, Belmont, California, 1983.
國 Annette J. Dobson.
An introduction to Generalized Linear Models.
Chapman \& Hall, London, 1990.
Edward W. Frees.
Regression Modeling with Actuarial and Financial Applications.
Cambridge University Press, 2010.

References

James Hardin and Joseph Hilbe.
Generalized Linear Models and Extensions.
Stata Press, College Station, Texas, 2001.
R- Piet De Jong and Gillian Z. Heller.
Generalized Linear Models for Insurance Data.
Cambridge University Press, 2008.
R W.N. Venables and B.D. Ripley.
Modern Applied Statistics with S.
Springer New York, 2002.

[^0]: Null deviance: $7.4773 \mathrm{e}+10$ on 199 degrees of freedom Residual deviance: $7.4773 \mathrm{e}+10$ on 199 degrees of freedom AIC: 4519.5

 Number of Fisher Scoring iterations: 2

[^1]: Null deviance: 252.05 on 199 degrees of freedom Residual deviance: 252.05 on 199 degrees of freedom AIC: 4366.6

 Number of Fisher Scoring iterations: 3

