CAS Ratemaking and Product Management Seminar - March 2016

Severe Weather Part VIII - Alternative Uses of Weather Models

Ira Robbin, PhD, ACAS Economic Capital Modeling

CAS Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Disclaimers

- Nothing in this presentation should be taken as a statement of the opinion of current or prior clients or employers.
- No liability whatsoever is assumed for any damages, either direct or indirect, that may be attributed to use of methods discussed in this presentation.

Agenda

- Nomenclature What are we talking about?
 - CAT models vs Predictive Models
- CAT Result Basics
 - ELT, Return Period, Per Event vs AAL
- CAT Pricing
 - Algorithms and Risk Measures
 - Counterexamples
- Monitoring Rate Change
 - Rate change vs Change in Rate Adequacy
 - Model change, exposure change, layer change

CAT Models – Weather and More

- Weather Models are a subset of CAT Models
- Vendor models
 - EQ, Hurricane usually
 - Tornado, Terrorism, WC some
 - Flood less often
 - US, Japan, EU, vs rest of the world

Are CAT Models Predictive Models?

- CAT Models are predictive models
 - CAT Models can be used to make statements about probabilities of losses of a given size occurring in the future over a given time frame from specified CAT perils in specified regions.
- CAT Models are not Predictive Models
 - GLM vendors started calling their GLMs Predictive Models. This started as a marketing tool, but now the terminology is embedded and goes beyond the Insurance Industry.
 - In the Insurance Industry, CAT Modeling and Predictive Modeling are done by different teams.
 - Predictive Modeling prices the mean of the cells. CAT modeling quantifies the aggregation of risk.

CAT Result Basics

Event Loss Table Event Exceeding Probability Calculation Simulated years AEP and OEP TVaR Calculations

Event Loss Table

				Specific					Total
Event			Annual	Event Return	Risk A	Risk B	Risk C		Portfolio
Rank	Peril	Region	Prob	period	Loss	Loss	Loss	•••	Loss
1	EQ	CA	0.021%	4,762	300	1,200	0	•••	125,000
2	EQ	CA	0.040%	2,500	0	1,000	0	•••	100,000
3	HU	FLA	0.080%	1,250	0	0	3,000	•••	90,000
4	EQ	CA	0.070%	1,429	900	400	0	•••	80,000
5	HU	LA	0.045%	2,222	0	0	2,100	•••	75,000
6	EQ	CA	0.055%	1,818	700	0	700	•••	70,000
:	•	•	•	•	•	•	•		• •
	•	•	•		•	•	•		
998	HU	NC	0.015%	6,667	0	2	0	•••	2
999	HU	FL	0.400%	250	0	2	1	•••	2
1,000	HU	SC	0.200%	500	0	1	0	•••	1
•	•	•	•	•	•	•	•		• •
•	•	•	•	•	•	•	•		•
4,998	EQ	NM	0.100%	1,000	0	0	0	•••	0
4,999	HU	FLA	0.400%	250	0	0	0	•••	0
5,000	EQ	AK	0.500%	200	0	0	0	•••	0

Portfolio Event Exceeding Probability Table

k			p(k)	Event	EP(k) P	Portfolio Event	
Event			Annual	Return	Exceeding	EP Return	Portfolio
Rank	Peril	Region	Prob	period	Probability	Period	Event Loss
1	EQ	CA	0.021%	4,762	0.021%	4,762	125,000
2	EQ	CA	0.040%	2,500	0.061%	1,640	100,000
3	HU	FLA	0.080%	1,250	0.141%	710	90,000
4	EQ	CA	0.070%	1,429	0.211%	474	80,000
5	HU	LA	0.045%	2,222	0.256%	391	75,000
6	EQ	CA	0.055%	1,818	0.311%	322	70,000
•	•	• •					
•	•						
998	HU	NC	0.015%	6,667	24.000%	4	2
999	HU	FL	0.400%	250	24.304%	4	2
1,000	HU	SC	0.200%	500	24.455%	4	1
•	•						
•	·	• •					
4.998	FO	NM	0.100%	1.000	83.000%	1	_
4 999	- «	FLA	0.400%	250	83.068%	1	_
5,000	FO	AK	0.400%	200	83 153%	1	_
5,000	EQ	AN	0.500%	200	05.133%	L	-

Exceeding Probability and Return Period

$$EP(k+1) = EP(k) + p(k+1)(1 - EP(k))$$

- Exceeding Probability
- EP(k) = Probability that over one year there will be a loss bigger than or equal to the kth largest loss in the event loss table
- Return period = 1/EP(k)
- The event associated with the 100 year return period has annual probability, p(k), less than 1/100

Simulation Trials

						Largest Event	Total Annual
Trial Year	Event 1	Event 2	Event 3			over the Year	Loss
1	40,000	-	-	-		40,000	40,000
2	1	3,500	9	-	-	3,500	3,510
3	-	-	-			0	0
4	10	27,550	-			27,550	27,560
5	700	400	50			700	1,150
6	1,250	4	25			1,250	1,279
7	-	-	-			0	0
8	75	45	70,000			70,000	70,120
9	-	-	-			0	0
10	15	3,500	45			3,500	3,560
	•	•	•				
9,998	2	-	-			2	2
9,999	550	7,750	-			7,750	8,300
10,000	650	-	-			650	650

Annual Loss Rank Ordered Simulation Trials

Trial Year		Largest	Total Annual
Rank	Ranking based on total annual loss	Event	Loss
1		125,000	175,000
2		125,000	170,000
3		90,000	155,000
4		100,000	137,500
5		100,000	135,000
6		100,000	130,000
7		90,000	125,000
8		90,000	115,000
9		100,000	105,000
10		90,000	102,500
•		•	•
•	100/10000 - 1.0%	•	•
99	100/10000 - 1.0%	21,250	37,500
100	AED VaP = 26.675	21,000	36,675
101	AEP Var = 50,075	35,000	35,950
:		•	•
•		•	•
9,998		-	0
9,999		-	0
10,000		-	0

Largest Event Rank Ordered Simulation Trials

Trial Year			Largest	Total Annual
Rank	Ranking base	d on largest event loss	Event	Loss
1			125,000	175,000
2			125,000	170,000
3			100,000	137,500
4			100,000	135,000
5			100,000	130,000
6			100,000	100,000
7			95,000	97,500
8			92,500	102,000
9			90,000	155,000
10			90,000	125,000
:			•	•
•	Γ	100/10000 - 1.0%	•	•
99		100 vor raturn pariod	35,125	35,250
100		$OED V_{2}P = 25,000$	35,000	35,950
101		0EP Van - 35,000	35,000	35,125
:			•	•
•			•	•
9,998			-	0
9,999			-	0
10,000			-	0

Pricing CAT Coverage

Basic equations Definition of properties and coherence Pricing Algorithms Reference Portfolio Risk Measures A few counterexamples **Basic Pricing Equations**

• P = E[X] + RL(X)

P = Indicated premium prior to expense loading

X = CAT Loss

RL(X) = Risk Load

- $RL(X) = r_{target} * C(X)$
- C(X) = Required Capital

- RORAC Approach used by many
- RAROC /Bond equivalent sued by some
- CAPM not used
 - since CATs independent of stock market, CAPM risk load should be zero

Premium – Basic Properties

- 1. Monotonic: If $X_1 \leq X_2$, then $P(X_1) \leq P(X_2)$
- 2. Pure: If $X \equiv \alpha$ then P(X) = E[X]
- 3. Bounded: If $X \le k$, then $P(X) \le k$
- 4. Continuous (Stable): P(X) is continuous
 - small changes in X do not cause large changes in P(X)

Premium – Coherence Properties

- 1. Scalable: $P(\lambda X) = \lambda \cdot P(X)$
- 2. Translation Invariant: $P(X+\alpha) = P(X) + \alpha$ when $0 \le \alpha$.
- 3. Subadditive: $P(X_1 + X_2) \le P(X_1) + P(X_2)$

A failure of subadditivity means there is consolidation penalty instead of a benefit

Required Capital Algorithms

Capital Algorithm Properties

Incremental

- Order Dependent
- Reference portfolio
- Portfolio dependent capital ≤ Standalone capital
- Allocation
 - Automatically Calibrated $\sum C(X|R) = C(R)$
- Co-measures and Euler allocation

Risk Measures: VaR, TVaR

Examples and Counterexamples

Example of VaR, XVaR, TVaR, and XTVaR

Statistic	Value	Statistic	Value
Trials	10	Rank for VaR	3.0
Average	100.0	VaR	150.0
Percentage	70.00%	XVaR	50.0
		TVaR	250.0
		XTVaR	150.0
Ordered Loss	Data		
			Conditional
Rank	Loss	VaR Percentage	Tail Avg
1	400	90.0%	400
2	200	80.0%	300
3	150	70.0%	250
4	100	60.0%	213
5	80	50.0%	186
6	50	40.0%	163
7	15	30.0%	142
8	3	20.0%	125
9	2	10.0%	111
10	0	0.0%	100

Ranking Definition of VaR and TVaR

Let X₁ ≥ X₂ ... ≥ X_n be an ordering of n trials of X
 Suppose k = (1 - θ)n, then

 $VaR(\theta) = X_k$

$$TVaR(\theta) = \frac{1}{k} \sum_{j=1}^{k} X_j$$

 Note TVaR is <u>not</u> necessarily equal to the Conditional Tail Expectation (CTE) when the data is discrete.

Example: TVaR and CTE are not the same

Statistic	Value	Results	А	Ref	A+Ref
Trials	10	Mean	2.50	25.00	27.50
Pct	50%	VaR	2.00	31.00	31.00
Rank	5	TVaR	4.80	33.80	34.20
		CTE (>)	6.67	34.50	35.00
		CTE (≥)	4.80	33.80	33.67

Loss Data by	y Trial			Separately Ordered Loss Data			
Trial	А	Ref	A+Ref	Rank	А	Ref	A+Ref
1	7.00	12.00	19.00	1	9.00	37.00	37.00
2	0.00	37.00	37.00	2	7.00	35.00	35.00
3	0.00	31.00	31.00	3	4.00	33.00	35.00
4	0.00	35.00	35.00	4	2.00	33.00	33.00
5	0.00	33.00	33.00	5	2.00	31.00	31.00
6	2.00	17.00	19.00	6	1.00	27.00	31.00
7	9.00	11.00	20.00	7	0.00	17.00	20.00
8	2.00	33.00	35.00	8	0.00	14.00	19.00
9	4.00	27.00	31.00	9	0.00	12.00	19.00
10	1.00	14.00	15.00	10	0.00	11.00	15.00

VaR Subadditivity-Epic Fail

Statistic	Value		Mean	VaR
Trials	10	Risk A	10.00	6.00
Percentage	50.00%	Reference Portfolio	100.00	124.00
Rank	5	Sum	110.00	130.00
		Combined Portfolio	110.00	148.00
		Consolidation Benefit	0.00	-18.00
		Incremental VaR for A		24.00

Loss Data by	/ Trial			Separately Ordered Loss Data			
Trial	А	Ref	A+Ref	Rank	А	Ref	A+Ref
1	6	40	46	1	26	148	170
2	0	148	148	2	24	144	154
3	26	144	170	3	18	140	150
4	14	140	154	4	14	132	148
5	18	132	150	5	6	124	148
6	4	68	72	6	6	92	94
7	0	64	64	7	4	68	72
8	24	124	148	8	2	64	64
9	2	92	94	9	0	48	54
10	6	48	54	10	0	40	46

Incremental VaR not scalable: A

Statistic	Value		Mean	VaR
Trials	10	Risk A Standalone	10.00	11.00
Percentage	50.00%	Reference Portfolio	100.00	96.00
Rank	5	Sum	110.00	107.00
		Combined Portfolio	110.00	105.00
		Incremental VaR for A		9.00

Loss Data by	/ Trial			Separately Ordered Loss Data			
Trial	А	Ref	A+Ref	Rank	А	Ref	A+Ref
1	11	52	63	1	28	148	149
2	1	148	149	2	20	140	144
3	0	140	140	3	16	128	140
4	0	128	128	4	13	124	128
5	4	96	100	5	11	96	105
6	28	68	96	6	7	92	100
7	16	64	80	7	4	88	96
8	20	124	144	8	1	68	95
9	7	88	95	9	0	64	80
10	13	92	105	10	0	52	63

Incremental VaR not scalable: 2*A

Statistic	Value		Mean	VaR
Trials	10	Risk 2A Standalone	20.00	22.00
Percentage	50.00%	Reference Portfolio	100.00	96.00
Rank	5	Sum	120.00	118.00
		Combined Portfolio	120.00	124.00
		Incremental VaR for 2A		28.00

Loss Data by Trial			Separately	Ordered L	oss Data		
Trial	2A	Ref	2A+Ref	Rank	2A	Ref	2A+Ref
1	22	52	74	1	56	148	164
2	2	148	150	2	40	140	150
3	0	140	140	3	32	128	140
4	0	128	128	4	26	124	128
5	8	96	104	5	22	96	124
6	56	68	124	6	14	92	118
7	32	64	96	7	8	88	104
8	40	124	164	8	2	68	102
9	14	88	102	9	0	64	96
10	26	92	118	10	0	52	74

Co-VaR Instability

Rank	VaR Percentage	Portfolio Loss	Risk A Loss
1			
98	99.02%	\$422	\$6
99	99.01%	\$408	\$O
100	99.00%	\$405	\$20
101	98.99%	\$395	\$0
102	98.98%	\$390	\$4
10,000			

The 100 year return period Co-Var for A is \$20
 Slight portfolio change or new simulation could make it \$0

Pricing Summary and Conclusions

- Indicated pricing is based on target return on required capital.
- Debate is over required capital
- A profusion of methods and approaches
- Tail focus, portfolio dependence, absolute vs relative calibration are key areas where methods differ
- Some of key methods used in practice do not satisfy all the desired conceptual properties
- Try any method yourself on simple examplesunderstand how it works and how it fails.

Rate Change on CAT Business

Renewal Rate Change Definition and context Individual Account Calculation Mix and Coverage Structure Adjustments Portfolio Average Rate Change Weighting on renewal premiums is wrong! Notional expiring weights and harmonic averages

Defining Renewal Rate Change

Nominal Renewal Rate Change = <u>Renewal Rate</u> Expiring Rate

Popularity of Renewal Rate Change

- Fair based only on UWs own accounts
- Intuitive easy to explain
- Data available and timely

CAT Exposed Excess Property Business

- Commercial Property
- DIC or Specified Peril Coverage
- Excess and Surplus Lines Wholesale
- Excess Layers
- Exposure to HC or EQ

Exposures

- Location Schedule
 - Addresses of all covered locations
 - Geo-coding accuracy important in CAT pricing
- Stated Values in Schedule TIVs
 - Structure, Contents, and Time Element values
- Characteristics
 - Construction
 - Occupancy
 - Protection
 - Number of Stories

Age

Layers

- 100% Layer: Layer Limit xs of Attachment
 \$10.0m xs of \$15.0m
- Share: Company Limit part of Layer Limit
 - \$2.5m p/o \$10.0m xs \$15.0m
 - 25% share in \$10.0m xs \$15.0m layer

Account Nominal Rate Change

$\Delta N = Nominal Rate Change$ = Change in 100% Layer Rates

100%Layer Rate = *100% Layer Premium \$100 of TIV*

 100% rates used to avoid confusing change in share with change in rate

Nominal Rate Change Example

Wayne's Widgets

	Expiring	Renewal
Premium	\$50,000	\$40,000
Coverage	\$5m p/o \$25m x \$5m	\$2.5m p/o \$10m x \$15m
Company Limit (\$m)	\$5.0	\$2.5
Layer 100% Limit (\$m)	\$25.0	\$10.0
Share	20.0%	25.0%
Attachment(\$m)	\$5.0	\$15.0
Exposure TIV (\$m)	\$30.0	\$25.0
Layer 100% Premium	\$250,000	\$160,000
100% Rate per \$100 TIV	\$0.833	\$0.640
Nominal Rate Change		<mark>-23</mark> %

Rate on Line

Rate on Line = Premium Per Mill of Limit

Wayne's Widgets					
	Expiring	Renewal			
Premium	\$50,000	\$40,000			
Coverage	\$5m p/o \$25m x \$5m	\$2.5m p/o \$10m x \$15m			
Company Limit (\$m)	\$5.0	\$2.5			
Layer 100% Limit (\$m)	\$25.0	\$10.0			
Share	20.0%	25.0%			
Layer 100% Premium	\$250,000	\$160,000			
ROL(Prem Per \$M of Limit)	\$10,000	\$16,000			
ROL change		60%			

Nominal Renewal Rate Change Misleading?

- Ignores Location Mix changes
 - Dropping properties near the coast ⇒ reduced rate
- Ignores Coverage Layer changes
 - Increase attachment/ reduce limit ⇒ reduced rate
- Rate movements due to changes in coverage and location mix should not be counted as "real" rate changes

Property CAT Coverage and Schedule Changes

Insureds

- Affordability following CAT event
- May reduce coverage, remove locations
- Insurance Company
 - Need to reduce aggregate CAT exposure
 - Change in UW strategy

Broker

- Introduce competition
- Reduce price and keep the account

Quantify Impact on Technical Premium

- Strategy: Compute % Change in Technical Premium Rate
 - Back this change out of the nominal rate change
- Technical Premium
 - Machine generated premium
 - Includes loss and risk load provisions
 - No Schedule rating or market adjustments
- Stats from CAT Model
 - AAL = Annual Average Loss
 - PML = Probable Max Loss
- Demo: Tech Prem = 1.5*(AAL+.05*PML)

Account Rate Change Decomposition

Nominal Rate Change

Technical Rate Change due to ∆in Coverage Layer

Technical Rate Change due to Δ in Location Schedule

(Effective) Renewal Rate Change

Coverage and Location Mix Adjustments

Location Mix Adjustment Factor = MXAF= $\frac{\text{Tech Rate(Renewal Locs, Expiry Layer)}}{\text{Tech Rate(Expiry Locs, Expiry Layer)}}$

Coverage Structure Adjustment Factor = CSAF= $\frac{Tech Rate(Renewal Locs, Renewal Layer)}{Tech Rate(Renewal Locs, Expiry Layer)}$

Adjustments with Technical Rates

Wayne's Widgets					
	Expiry Exposure	Ren Exposure	Ren Exposure		
	Expiry Layer	Expiry Layer	Ren Layer		
Covorago	\$5m p/o	\$5m p/o	\$2.5m p/o		
Coverage	\$25m x \$5m	\$25m x \$5m	\$10m x \$15m		
Exposure TIV (\$m)	\$30.0	\$25.0	\$25.0		
Company Share	20%	20%	25%		
100% AAL	\$50,000	\$40,000	\$15,000		
100% PML (\$m) \$15.0		\$11.0	\$05.0		
Technical Premium \$300,000		\$225,000	\$97,500		
Tech Rate (\$100 TIV) \$1.00		\$0.90	\$0.39		
Adjustment Factor		0.900	0.433		
		MXAF	CSAF		

Renewal Rate Change (ΔR)

- ΔR = Renewal Rate Change
- ΔR = Nominal Rate Change net of Location Mix and Coverage Structure adjustment factors

$$\Delta R = \frac{(1 + \Delta N)}{MXAF \cdot CSAF} - 1$$

Renewal Rate Change Example

Wayne's Widgets					
	Expiring	Renewal			
Premium	\$50,000	\$40,000			
Coverage	\$5m p/o \$25m x \$5m	\$2.5m p/o \$10m x \$15m			
Exposure TIV (\$m)	\$30.0	\$25.0			
Company Share	20%	25%			
Layer 100% Premium	\$250,000	\$160,000			
Rate per \$100 TIV	\$0.833	\$0.640			
Nominal Rate Change		-23%			
Location Mix (MXAF)		0.9000			
Coverage (CSAF)		0.4333			
Renewal Rate Change		97%			

Premium Reconciliation

$$P_{REN} = P_{EXP} \cdot \frac{s_{REN}}{s_{EXP}} \cdot \frac{TIV_{REN}}{TIV_{EXP}} \cdot MXAF \cdot CSAF \cdot (1 + \Delta R)$$

Notional Expiring Premium

 What the Expiring Premium would have been if it were based on the same location schedule and layer of coverage as the Renewal policy

$$P_{NXP} = P_{EXP} \cdot \frac{TIV_{REN}}{TIV_{EXP}} \cdot \frac{s_{REN}}{s_{EXP}} \cdot MXAF \cdot CSAF$$
$$\Rightarrow P_{NXP} = \frac{P_{REN}}{(1 + \Delta R)}$$

Conclusion

CAT Models are used for:

- Pricing
- Capital Allocation
- Price Monitoring
- Questions?